The 21st International Conference “Man and Working Environment”
SAFETY ENGINEERING & MANAGEMENT SCIENCE, INDUSTRY, EDUCATION (SEMSIE 2025)   
PROCEEDINGS OF PAPERS 
25-26 September 2025, SOKOBANJA, SERBIA  

Milena Mančić , Miomir Raos , Marko Mančić ,
Milena Medenica , Marjan Popović , Mirjana Laković 

ORIGINAL SCIENTIFIC PAPER

POTENTIAL AND IMPACT OF GREEN HYDROGEN ON GLOBAL ENERGY SECTOR

Abstract:

The use of green hydrogen represents the most likely direction for the transformation of the energy sector of modern society, on the path of transition towards the use of sustainable energy in the future. Only green hydrogen, produced by using renewable energy sources, can significantly contribute to achieving the goals of the sustainable energy strategy, with a particular contribution to reducing carbon dioxide and global greenhouse gas emissions. This paper analyzes the current state and potential of the use of green hydrogen in different sectors, with a special emphasis on Europe, as a leader in the implementation of hydrogen-based technologies. A comparative analysis of cases shows how different approaches can contribute to accelerating the adoption of green hydrogen on a global scale. Through this paper, the aim is to provide a comprehensive overview of the current state, challenges and opportunities for the wider application of green hydrogen, and to point out its potential to become a key link in sustainable energy transformation and reduction of dependence on fossil fuels.

Keywords:

Renewable energy sources, green hydrogen, energy demands

ACKNOWLEDGEMENTS:

This paper is supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia pursuant to agreement № 451-03-66/2024-03/ 200148 with the University of Niš, Faculty of Occupational Safety.

REFERENCES:
  • Abánades, J. C., Rubin, E. S., Mazzotti, M., & Herzog, H. J. (2017). On the climate change mitigation potential of CO2 conversion to fuels. Energy & Environmental Science, 10(12), 2491. https://doi.org/10.1039/c7ee02819a  
  • Agyekum, E. B., Nutakor, C., Agwa, A. M., & Kamel, S. (2022). A Critical Review of Renewable Hydrogen Production Methods: Factors Affecting Their Scale-Up and Its Role in Future Energy Generation [Review of A Critical Review of Renewable Hydrogen Production Methods: Factors Affecting Their Scale-Up and Its Role in Future Energy Generation]. Membranes, 12(2), 173. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/membranes12020173  
  • Ayers, K. E. (2019). The potential of proton exchange membrane–based electrolysis technology. Current Opinion in Electrochemistry, 18, 9. https://doi.org/10.1016/j.coelec.2019.08.008  
  • Baral, S., & Šebo, J. (2024). Techno-economic assessment of green hydrogen production integrated with hybrid and organic Rankine cycle (ORC) systems. Heliyon, 10(4). https://doi.org/10.1016/j.heliyon.2024.e25742  
  • Bauer, C., Treyer, K., Antonini, C., Bergerson, J., Gazzani, M., Gençer, E., Gibbins, J., Mazzotti, M., McCoy, S., McKenna, R., Pietzker, R., Ravikumar, A., Romano, M. C., Ueckerdt, F., Vente, J. F., & Spek, M. van der. (2021). On the climate impacts of blue hydrogen production. https://doi.org/10.33774/chemrxiv-2021-hz0qp  
  • Brusiło, P., Węgrzyn, A., Graczyk, A., & Graczyk, A. M. (2025). Hydrogen SWOT Analysis of Poland’s Energy Transition. Energies, 18(7), 1789. https://doi.org/10.3390/en18071789  
  • Cammeraat, E., Dechezleprêtre, A., & Lalanne, G. (2022). Innovation and industrial policies for green hydrogen. In OECD science, technology and industry policy papers. https://doi.org/10.1787/f0bb5d8c-en  
  • Cheng, J., Meng, J., Bao, G., & Hu, X. (2025). Control of DC Bus Voltage in a 10 kV Off-Grid Wind–Solar–Hydrogen Energy Storage System. Energies, 18(9), 2328. https://doi.org/10.3390/en18092328  
  • Chiroșcă, A.-M., Rusu, E., & Mînzu, V. (2024). Green Hydrogen—Production and Storage Methods: Current Status and Future Directions. Energies, 17(23), 5820. https://doi.org/10.3390/en17235820  
  • Criollo, A., Minchala, L. I., Benavides, D., Ochoa-Correa, D., Tostado‐Véliz, M., Meteab, W. K., & Jurado, F. (2024). Green Hydrogen Production—Fidelity in Simulation Models for Technical–Economic Analysis. Applied Sciences, 14(22), 10720. https://doi.org/10.3390/app142210720  
  • Curcio, E. (2025). Techno-Economic Analysis of Hydrogen Production: Costs, Policies, and Scalability in the Transition to Net-Zero. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2502.12211  
  • Dawood, F., Anda, M., & Shafiullah, G. (2020). Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 45(7), 3847. https://doi.org/10.1016/j.ijhydene.2019.12.059  
  • Dinçer, İ. (2011). Green methods for hydrogen production. International Journal of Hydrogen Energy, 37(2), 1954. https://doi.org/10.1016/j.ijhydene.2011.03.173 
  • Fang, Y., Zhou, H., Huang, Y., Sun, J., Qin, F., Bao, J., Goddard, W. A., Chen, S., & Ren, Z. (2018). High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-04746-z  
  • Franco, A. (2025). Green Hydrogen and the Energy Transition: Hopes, Challenges, and Realistic Opportunities. Hydrogen, 6(2), 28. https://doi.org/10.3390/hydrogen6020028  
  • Franco, A., & Giovannini, C. (2023). Recent and Future Advances in Water Electrolysis for Green Hydrogen Generation: Critical Analysis and Perspectives. Sustainability, 15(24), 16917. https://doi.org/10.3390/su152416917  
  • Franzmann, D., Heinrichs, H., Lippkau, F., Addanki, T., Winkler, C., Buchenberg, P., Hamacher, T., Blesl, M., Linßen, J., & Stolten, D. (2023). Green hydrogen cost-potentials for global trade. International Journal of Hydrogen Energy, 48(85), 33062. https://doi.org/10.1016/j.ijhydene.2023.05.012  
  • Gómez, J. L., & Castro, R. (2024). Green Hydrogen Energy Systems: A Review on Their Contribution to a Renewable Energy System [Review of Green Hydrogen Energy Systems: A Review on Their Contribution to a Renewable Energy System]. Energies, 17(13), 3110. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/en17133110  
  • Graaf, T. V. de, Øverland, I., Scholten, D., & Westphal, K. (2020). The new oil? The geopolitics and international governance of hydrogen. Energy Research & Social Science, 70, 101667. https://doi.org/10.1016/j.erss.2020.101667  
  • Green Hydrogen in Developing Countries. (2020). In World Bank, Washington, DC eBooks. https://doi.org/10.1596/34398 
  • Greevenbroek, K. van, Schmidt, J., Zeyringer, M., & Horsch, A. (2024). Little to lose: the case for a robust European green hydrogen strategy. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2412.07464  
  • Guarieiro, L. L. N., Anjos, J. P. dos, Silva, L. da, Santos, A. Á. B., Calixto, E. E. da S., Pessoa, F. L. P., Almeida, J. de, Filho, M. A., Marinho, F. de S., Rocha, G. O. da, & Andrade, J. B. de. (2022). Technological Perspectives and Economic Aspects of Green Hydrogen in the Energetic Transition: Challenges for Chemistry. Journal of the Brazilian Chemical Society. https://doi.org/10.21577/0103-5053.20220052  
  • Hamedani, E. A., Alenabi, S. A., & Talebi, S. (2024). Hydrogen as an energy source: A review of production technologies and challenges of fuel cell vehicles [Review of Hydrogen as an energy source: A review of production technologies and challenges of fuel cell vehicles]. Energy Reports, 12, 3778. Elsevier BV. https://doi.org/10.1016/j.egyr.2024.09.030  
  • Han, Z., Yuan, S., Dong, Y., Ma, S., Bian, Y., & Mao, X. (2022). Research on the Flexibility Margin of an Electric–Hydrogen Coupling Energy Block Based on Model Predictive Control. Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.879244 
  • Hartley, P. G., & Au, V. (2020). Towards a Large-Scale Hydrogen Industry for Australia. Engineering, 6(12), 1346. https://doi.org/10.1016/j.eng.2020.05.024 
  • Hidouri, D., Omrane, I. B., Khalil, K., & Chérif, A. (2025). Energy Management of a 1 MW Photovoltaic Power-to-Electricity and Power-to-Gas for Green Hydrogen Storage Station. World Electric Vehicle Journal, 16(4), 227. https://doi.org/10.3390/wevj16040227  
  • Icaza, D., Jurado, F., Østergaard, P. A., Tostado‐Véliz, M., & Flores-Vázquez, C. (2025). Cornerstones for greater participation of smart renewable energy on clustered islands: The case of Guayas in Ecuador towards 2050. Energy Reports, 13, 1350. https://doi.org/10.1016/j.egyr.2025.01.006  
  • Iliadis, P., Ntomalis, S., Atsonios, K., Nesiadis, A., Nikolopoulos, N., & Grammelis, P. (2020). Energy management and techno‐economic assessment of a predictive battery storage system applying a load levelling operational strategy in island systems. International Journal of Energy Research, 45(2), 2709. https://doi.org/10.1002/er.5963  
  • James, N., & Menzies, M. (2022). Spatio-temporal trends in the propagation and capacity of low-carbon hydrogen projects. International Journal of Hydrogen Energy, 47(38), 16775. https://doi.org/10.1016/j.ijhydene.2022.03.198  
  • Jianghao, N. (2021). Research on the Hydrogen Production Technology. IOP Conference Series Earth and Environmental Science, 813(1), 12004. https://doi.org/10.1088/1755-1315/813/1/012004  
  • Kumar, S. S., & Lim, H. (2022). An overview of water electrolysis technologies for green hydrogen production. Energy Reports, 8, 13793. https://doi.org/10.1016/j.egyr.2022.10.127  
  • Lapi, T., Chatzimpiros, P., Raineau, L., & Prinzhofer, A. (2022). System approach to natural versus manufactured hydrogen: An interdisciplinary perspective on a new primary energy source. International Journal of Hydrogen Energy, 47(51), 21701. https://doi.org/10.1016/j.ijhydene.2022.05.039  
  • Le, P.-A., Trung, V. D., Nguyen, P. L., Phung, T. V. B., Natsuki, J., & Natsuki, T. (2023). The current status of hydrogen energy: an overview [Review of The current status of hydrogen energy: an overview]. RSC Advances, 13(40), 28262. Royal Society of Chemistry. https://doi.org/10.1039/d3ra05158g  
  • Lee, J., Lee, S. A., Lee, T. H., & Jang, H. W. (2025). Unlocking the potential of chemical-assisted water electrolysis for green hydrogen production. Industrial Chemistry and Materials. https://doi.org/10.1039/d4im00163j  
  • Mahmoud, M., Semeraro, C., Abdelkareem, M. A., & Olabi, A. G. (2024). Designing and Prototyping the Architecture of a Digital Twin for Wind Turbine. International Journal of Thermofluids, 22, 100622. https://doi.org/10.1016/j.ijft.2024.100622  
  • Marocco, P., Novo, R., Lanzini, A., Mattiazzo, G., & Santarelli, M. (2022). Towards 100% renewable energy systems: The role of hydrogen and batteries. Journal of Energy Storage, 57, 106306. https://doi.org/10.1016/j.est.2022.106306  
  • Marouani, I., Guesmi, T., Alshammari, B. M., Alqunun, K., Alzamil, A., Alturki, M., & Abdallah, H. H. (2023). Integration of Renewable-Energy-Based Green Hydrogen into the Energy Future. Processes, 11(9), 2685. https://doi.org/10.3390/pr11092685  
  • McQueen, S., Stanford, J., Satyapal, S., Miller, E. L., Stetson, N., Papageorgopoulos, D., Rustagi, N., Arjona, V., Adams, J., Randolph, K., Peterson, D., Hill, L., Koleva, M., Reinhardt, T., Frye, E., Schrecengost, R., Kokkinos, A., Litynski, J., Conrad, R., … Costa, R. T. da. (2020). Department of Energy Hydrogen Program Plan. https://doi.org/10.2172/1721803  
  • Meda, U. S., Bhat, N., Pandey, A., Subramanya, K. N., & Raj, M. A. L. A. (2023). Challenges associated with hydrogen storage systems due to the hydrogen embrittlement of high strength steels. International Journal of Hydrogen Energy, 48(47), 17894. https://doi.org/10.1016/j.ijhydene.2023.01.292  
  • Mekonnin, A. S., Wacławiak, K., Humayun, M., Zhang, S., & Ullah, H. (2025). Hydrogen Storage Technology, and Its Challenges: A Review [Review of Hydrogen Storage Technology, and Its Challenges: A Review]. Catalysts, 15(3), 260. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/catal15030260  
  • Nayebossadri, S., Walsh, M., & Smailes, M. (2025). An Overview of the Green Hydrogen Value Chain Technologies and Their Challenges for a Net-Zero Future. https://doi.org/10.20944/preprints202503.1114.v1  
  • Nguyen, B. L.-H., Panwar, M., Hovsapian, R., Nagasawa, K., & Vu, T. (2021). Power Converter Topologies for Electrolyzer Applications to Enable Electric Grid Services. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, 1. https://doi.org/10.1109/iecon48115.2021.9589044  
  • Niepelt, R., Schlemminger, M., Bredemeier, D., Peterssen, F., Lohr, C., Bensmann, A., Hanke‐Rauschenbach, R., & Brendel, R. (2023). The Influence of Falling Costs for Electrolyzers on the Location Factors for Green Hydrogen Production. Solar RRL, 7(17). https://doi.org/10.1002/solr.202300317  
  • Noussan, M., Raimondi, P. P., Scita, R., & Häfner, M. (2020). The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective. Sustainability, 13(1), 298. https://doi.org/10.3390/su13010298  
  • Offshore renewable energies: A review towards Floating Modular Energy Islands—Monitoring, Loads, Modelling and Control. (2024). https://ezproxy.nb.rs:2055/science/article/pii/S0029801824025897  
  • Papadaki, A., Savvakis, N., Sifakis, N., & Arampatzis, G. (2025). Analysis of Hybrid Renewable Energy Systems for European Islands: Market Dynamics, Opportunities and Challenges. Sustainable Futures, 100601. https://doi.org/10.1016/j.sftr.2025.100601  
  • Preuster, P., Аlekseev, A. S., & Wasserscheid, P. (2017). Hydrogen Storage Technologies for Future Energy Systems [Review of Hydrogen Storage Technologies for Future Energy Systems]. Annual Review of Chemical and Biomolecular Engineering, 8(1), 445. Annual Reviews. https://doi.org/10.1146/annurev-chembioeng-060816-101334  
  • Qiu, Y., Zhou, B., Zang, T., Zhou, Y., Chen, S., Qi, R., Li, J., & Lin, J. (2023). Extended load flexibility of utility-scale P2H plants: Optimal production scheduling considering dynamic thermal and HTO impurity effects. Renewable Energy, 217, 119198. https://doi.org/10.1016/j.renene.2023.119198  
  • Ramu, A. G., & Choi, D. (2025). Interfacial water engineering for enhanced pure water electrolysis. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-98853-9  
  • Reyes-Barquet, L. M., Rico-Contreras, J. O., Azzaro‐Pantel, C., Moras-Sánchez, C. G., González-Huerta, M. Á., Vásquez, D. V., & Aguilar‐Lasserre, A. A. (2022). Multi-Objective Optimal Design of a Hydrogen Supply Chain Powered with Agro-Industrial Wastes from the Sugarcane Industry: A Mexican Case Study. Mathematics, 10(3), 437. https://doi.org/10.3390/math10030437  
  • Segovia-Hernandez, J. G., Hernández, S., Cossío-Vargas, E., Juárez-García, M., & Sánchez-Ramírez, E. (2024). Green Hydrogen Production for Sustainable Development: A Critical Examination of Barriers and Strategic Opportunities. RSC Sustainability. https://doi.org/10.1039/d4su00630e  
  • Silva, H., Merrouni, A. A., Touili, S., & Neto, J. A. (2024). Determination of photovoltaic hydrogen production potential in Portugal: a techno-economic analysis. Frontiers in Energy Research, 12. https://doi.org/10.3389/fenrg.2024.1380543  
  • Singlitico, A., Østergaard, J., & Chatzivasileiadis, S. (2021). Onshore, offshore or in-turbine electrolysis? Techno-economic overview of alternative integration designs for green hydrogen production into Offshore Wind Power Hubs. Renewable and Sustainable Energy Transition, 1, 100005. https://doi.org/10.1016/j.rset.2021.100005  
  • Squadrito, G., Maggio, G., & Nicita, A. (2023). The green hydrogen revolution. Renewable Energy, 216, 119041. https://doi.org/10.1016/j.renene.2023.119041 
  • Superchi, F., Bianchini, A., Moustakis, A., & Pechlivanoglou, G. (2025). Towards Sustainable Energy Independence: A Case Study of Green Hydrogen as Seasonal Storage Integration in a Small Island. Renewable Energy, 122813. https://doi.org/10.1016/j.renene.2025.122813  
  • Tang, W., Tan, Q., & Cai, R. (2022). Current situation analysis of electrohydrogen production under the background of “Carbon Neutralization.” IOP Conference Series Earth and Environmental Science, 983(1), 12035. https://doi.org/10.1088/1755-1315/983/1/012035  
  • Tebibel, H. (2021). Methodology for multi-objective optimization of wind turbine/battery/electrolyzer system for decentralized clean hydrogen production using an adapted power management strategy for low wind speed conditions. Energy Conversion and Management, 238, 114125. https://doi.org/10.1016/j.enconman.2021.114125  
  • Terlouw, T., Bauer, C., McKenna, R., & Mazzotti, M. (2022). Large-scale hydrogen production via water electrolysis: a techno-economic and environmental assessment. Energy & Environmental Science, 15(9), 3583. https://doi.org/10.1039/d2ee01023b  
  • Terlouw, T., Rosa, L., Bauer, C., & McKenna, R. (2024). Future hydrogen economies imply environmental trade-offs and a supply-demand mismatch. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-51251-7  
  • The Geopolitics of Renewable Hydrogen in Low-Carbon Energy Markets. (2020). Geopolitics History and International Relations, 12(1), 7. https://doi.org/10.22381/ghir12120201  
  • Tufa, R. A., Hnát, J., Němeček, M., Kodým, R., Curcio, E., & Bouzek, K. (2018). Hydrogen production from industrial wastewaters: An integrated reverse electrodialysis - Water electrolysis energy system. Journal of Cleaner Production, 203, 418. https://doi.org/10.1016/j.jclepro.2018.08.269  
  • Urs, R. R., Chadly, A., Al‐Sumaiti, A. S., & Mayyas, A. (2023). Techno-economic analysis of green hydrogen as an energy-storage medium for commercial buildings. Clean Energy, 7(1), 84. https://doi.org/10.1093/ce/zkac083  
  • Useche-Arteaga, M., Gomis‐Bellmunt, O., Cheah-Mañé, M., Lacerda, V. A., & Gebraad, P. (2024). AC energy islands for the optimal integration of offshore wind energy resources: Operation strategies using multi-objective nonlinear programming. Sustainable Energy Grids and Networks, 101576. https://doi.org/10.1016/j.segan.2024.101576  
  • Vedrtnam, A., Kalauni, K., & Pahwa, R. (2025). Water Electrolysis Technologies and Their Modeling Approaches: A Comprehensive Review [Review of Water Electrolysis Technologies and Their Modeling Approaches: A Comprehensive Review]. Eng—Advances in Engineering, 6(4), 81. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/eng6040081  
  • Veras, T. da S., Mozer, T. S., Santos, D. da C. R. M. dos, & César, A. da S. (2016). Hydrogen: Trends, production and characterization of the main process worldwide. International Journal of Hydrogen Energy, 42(4), 2018. https://doi.org/10.1016/j.ijhydene.2016.08.219  
  • Verhelst, S., & Wallner, T. (2009). Hydrogen-fueled internal combustion engines. Progress in Energy and Combustion Science, 35(6), 490. https://doi.org/10.1016/j.pecs.2009.08.001  
  • Wu, L., Xu, Y., Wang, Q., Zou, X., Pan, Z., Leung, M. K. H., & An, L. (2025). Direct seawater electrolysis for green hydrogen production: electrode designs, cell configurations, and system integrations. Energy & Environmental Science. https://doi.org/10.1039/d5ee01093d  
  • Wu, Q., Long, P., Han, G., Shu, J., Yuan, M., & Wang, B. (2025). Deep-Learning-Based Scheduling Optimization of Wind-Hydrogen-Energy Storage System on Energy Islands. Energy, 135107. https://doi.org/10.1016/j.energy.2025.135107  
  • Xie, Z., Jin, Q., Su, G., & Lu, W. (2024). A Review of Hydrogen Storage and Transportation: Progresses and Challenges [Review of A Review of Hydrogen Storage and Transportation: Progresses and Challenges]. Energies, 17(16), 4070. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/en17164070  
  • Xylia, M., Passos, M. V., Piseddu, T., & Barquet, K. (2023). Exploring multi-use platforms: A literature review of marine, multifunctional, modular, and mobile applications (M4s) [Review of Exploring multi-use platforms: A literature review of marine, multifunctional, modular, and mobile applications (M4s)]. Heliyon, 9(6). Elsevier BV. https://doi.org/10.1016/j.heliyon.2023.e16372  
  • Zeyen, E., Victoria, M., & Brown, T. (2023). Endogenous learning for green hydrogen in a sector-coupled energy model for Europe. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-39397-2  
  • Zhang, F., Zhao, P., Niu, M., & Maddy, J. (2016). The survey of key technologies in hydrogen energy storage. International Journal of Hydrogen Energy, 41(33), 14535. https://doi.org/10.1016/j.ijhydene.2016.05.293  
  • Zhang, W., Li, Q., Yuan, J., & Xu, C. (2025). Configuration optimization of offshore energy islands coupled with ammonia refueling station and submarine salt cavern hydrogen storage. International Journal of Hydrogen Energy, 113, 669. https://doi.org/10.1016/j.ijhydene.2025.02.481  
  • Zhao, W., Wang, B., Pan, T., Chen, Y., Tao, H., Guo, B., Varbanov, P. S., & Lu, J. (2025). Optimisation of island integrated energy system based on marine renewable energy.  
  • Zhao, Y., Yuan, H., Liu, X., Zhang, J., Song, J., & Wang, H. (2025). Zero-carbon energy system for offshore Islands: Integrating freeze desalination, hydrogen storage, and fuel cells. Applied Thermal Engineering, 126702. https://doi.org/10.1016/j.applthermaleng.2025.126702  
  • Zhu, D., Yang, B., Liu, Q., Ma, K., Zhu, S., Ma, C., & Guan, X. (2020). Energy trading in microgrids for synergies among electricity, hydrogen and heat networks. Applied Energy, 272, 115225. https://doi.org/10.1016/j.apenergy.2020.115225

© 2023 Faculty of Occupational Safety - Multimedia