The 21st International Conference “Man and Working Environment”
SAFETY ENGINEERING & MANAGEMENT SCIENCE, INDUSTRY, EDUCATION (SEMSIE 2025)   
PROCEEDINGS OF PAPERS 
25-26 September 2025, SOKOBANJA, SERBIA  

Milan Trifunović , Miloš Madić , Saša S. Nikolić , Marko Milojković 

ORIGINAL SCIENTIFIC PAPER

ANALYSIS OF CO2 EMISSIONS IN LONGITUDINAL MEDIUM TURNING OF 42CrMo4 STEEL

Abstract:

In the context of sustainable, eco-friendly machining, in addition to standard process performances, through which the suitability of selected parameters is assessed, analysis of the process environmental and sustainable performances is often considered. With this in mind the present study aims at analysing CO2 emissions per volume of material removed in dry longitudinal single-pass medium turning of low-alloyed steel 42CrMo4 using a coated carbide cutting tool. Full factorial design was applied to arrange the main cutting parameters, i.e. depth of cut, feed rate and cutting speed, at three levels. For each experimental trial CO2 emissions data were obtained using a tool and cutting data recommendation system of the cutting tool manufacturer (Walter GPS). The analysis of results involved the analysis of main, interaction and quadratic effects, determination of statistically significant effects and development of non-linear model for the prediction of CO2 emissions per volume of material removed. In addition, the optimized cutting conditions for minimization of CO2 emissions were determined.

Keywords:

Turning, CO2 emissions, full factorial design, 42CrMo4 steel, prediction

ACKNOWLEDGEMENTS:

This research was financially supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (Contract No. 451-03-137/2025-03/200109). This paper was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia [Grant Number: 451-03-137/2025-03/ 200102].

REFERENCES:
  • Barać, M., Vitković, N., Stanković, Z., Rajić, M., & Turudija, R. (2024). Description and Utilization of an Educational Platform for Clean Production in Mechanical Engineering. Spectrum of Mechanical Engineering and Operational Research, 1(1), 145-158. https://doi.org/10.31181/smeor11202413  
  • Bhanot, N., Rao, P.V., & Deshmukh, S.G. (2016). An Assessment of Sustainability for Turning Process in an Automobile Firm. Procedia CIRP, 48, 538-543. https://doi.org/10.1016/j.procir.2016.03.024  
  • Bousnina, K., & Hamza, A. (2020). Reducing the energy consumed and increasing energy efficiency in the turning process. International Journal of Modern Manufacturing Technologies, 12(2), 23-28.  
  • Cakir, A.K (2021). A new approach to minimize carbon emission rate in turning processes. International Journal of Low-Carbon Technologies, 16(4), 1444-1452. https://doi.org/10.1093/ijlct/ctab058  
  • Fernando, R., Gamage, J., & Karunathilake, H. (2022). Sustainable machining: environmental performance analysis of turning. International Journal of Sustainable Engineering, 15(1), 15-34. https://doi.org/10.1080/19397038.2021.1995524  
  • Gupta, K. (2020). A Review on Green Machining Techniques. Procedia Manufacturing, 51, 1730-1736. https://doi.org/10.1016/j.promfg.2020.10.241 
  • Hassine, H., Barkallah, M., Bellacicco, A., Louati, J., Riviere, A., & Haddar, M. (2015). Multi Objective Optimization for Sustainable Manufacturing, Application in Turning. International Journal of Simulation Modelling, 14(1), 98-109. https://doi.org/10.2507/IJSIMM14(1)9.292  
  • Ic, Y.T., Saraloğlu Güler, E., Cabbaroğlu, C., Dilan Yüksel, E., & Maide Sağlam, H. (2018). Optimisation of cutting parameters for minimizing carbon emission and maximising cutting quality in turning process. International Journal of Production Research, 56(11), 4035-4055. https://doi.org/10.1080/00207543.2018.1442949  
  • Jiang, Z., Gao, D., Lu, Y., Kong, L., & Shang, Z. (2021). Quantitative Analysis of Carbon Emissions in Precision Turning Processes and Industrial Case Study. International Journal of Precision Engineering and Manufacturing-Green Technology, 8(1), 205-216. https://doi.org/10.1007/s40684-019-00155-9  
  • Kawecka, E., Perec, A., & Radomska-Zalas, A. (2024). Use of the Simple Multicriteria Decision-Making (MCDM) Method for Optimization of the High-Alloy Steel Cutting Process by the Abrasive Water Jet. Spectrum of Mechanical Engineering and Operational Research, 1(1), 111-120. https://doi.org/10.31181/smeor11202411  
  • Kumar, P., Jain, A.K., Chaurasiya, P.K., Tiwari, D., Gopalan, A., Arockia Dhanraj, J., Solomon, J.M., Sivakumar, A., Velmurugan, K., & Fefeh Rushman, J. (2022). Sustainable Machining Using Eco-Friendly Cutting Fluids: A Review. Advances in Materials Science and Engineering, 2022, Article ID: 5284471, 16 pages. https://doi.org/10.1155/2022/5284471  
  • Kumar, R., Bilga, P.S., & Singh, S. (2021). An Investigation of Energy Efficiency in Finish Turning of EN 353 Alloy Steel. Procedia CIRP, 98, 654-659. https://doi.org/10.1016/j.procir.2021.01.170  
  • Mia, M., Gupta, M.K., Lozano, J.A., Carou, D., Pimenov, D.Y., Królczyk, G., Khan, A.M., & Dhar, N.R. (2019). Multi-objective optimization and life cycle assessment of eco-friendly cryogenic N2 assisted turning of Ti-6Al-4V. Journal of Cleaner Production, 210, 121-133. https://doi.org/10.1016/j.jclepro.2018.10.334  
  • Montgomery, D.C. (2017). Design and Analysis of Experiments (9th ed.). John Wiley & Sons. 
  • Park, H.S., Nguyen, T.T., & Dang, X.P. (2016). Multi-Objective Optimization of Turning Process of Hardened Material for Energy Efficiency. International Journal of Precision Engineering and Manufacturing, 17(12), 1623-1631. https://doi.org/10.1007/s12541-016-0188-4  
  • Pervaiz, S., Kannan, S., & Kishawy, H.A. (2018). An extensive review of the water consumption and cutting fluid based sustainability concerns in the metal cutting sector. Journal of Cleaner Production, 197, Part 1, 134-153. https://doi.org/10.1016/j.jclepro.2018.06.190  
  • Rajemi, M.F., Mativenga, P.T., & Aramcharoen, A. (2010). Sustainable machining: selection of optimum turning conditions based on minimum energy considerations. Journal of Cleaner Production, 18(10-11), 1059-1065. https://doi.org/10.1016/j.jclepro.2010.01.025  
  • Somashekaraiah, R., Suvin, P.S., Gnanadhas, D.P., Kailas, S.V., & Chakravortty, D. (2016). Eco-Friendly, Non-Toxic Cutting Fluid for Sustainable Manufacturing and Machining Processes. Tribology Online, 11(5), 556-567. https://doi.org/10.2474/trol.11.556  
  • Stojković, M., Madić, M., Trifunović, M., & Turudija, R. (2022). Determining the Optimal Cutting Parameters for Required Productivity for the Case of Rough External Turning of AISI 1045 Steel with Minimal Energy Consumption. Metals, 12(11), Article ID: 1793, 23 pages. https://doi.org/10.3390/met12111793  
  • Walter (2025). Walter GPS. https://www.walter-tools.com/en-gb/gps 
  • Yin, R., Ke, J., Mendis, G., & Sutherland, J.W. (2019). A cutting parameter-based model for cost and carbon emission optimisation in a NC turning process. International Journal of Computer Integrated Manufacturing, 32(10), 919-935. https://doi.org/10.1080/0951192X.2019.1667026

© 2023 Faculty of Occupational Safety - Multimedia