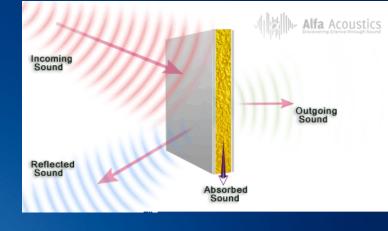
SPS.MYP.G6006: Acoustic Multi-Functional Composites for Environmental Risks and Health Hazards Reduction

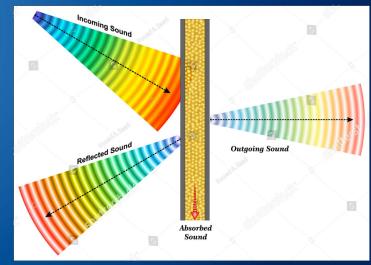
Acoustic characterization of sound-insulating and sound-absorbing composite materials

M. Praščević, D. Mihajlov, P. Jovanović University of Niš, Faculty of Occupational Safety



This workshop is supported by:

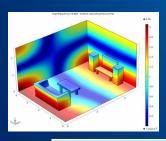
The NATO Science for Peace and Security Programme

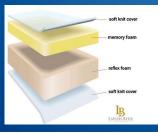


- reflection;
- absorption;
- transmission.

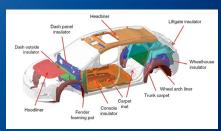
Acoustic quantities for characterizing acoustic materials:

- surface impedance;
- surface admittance;
- sound reflection coefficient;
- sound absorption coefficient;
- sound transmission loss.




No confident design and application of acoustic materials can be achieved without measurements of their characteristics!

- Geometric room acoustics models produce inaccurate results.
- It is impossible to write performance specifications for acoustic materials without proper measurements.


Experimental testing:

- assesses the acoustic performance of acoustic materials;
- optimizes their design for various applications.

- Impedance tube method;
- Reverberation room method;
- Two-microphone/multimicrophone free field measurement;
- In-situ method;
- p-u probe method;
- Active intensity and sound energy density in-situ method;
- Sound intensity method;
- Prediction models for porous absorbers

- Impedance tube method;
- Two-reverberation room method;
- Duct enclosed in the cabin;
- Sound intensity method

Characterization techniques for sound-absorption properties

Impedance tube method

Impedance tube method (Kundt's method):

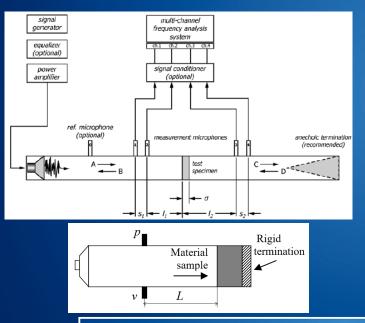
- normal incidence sound absorption coefficient measurement
- surface impedance measurement

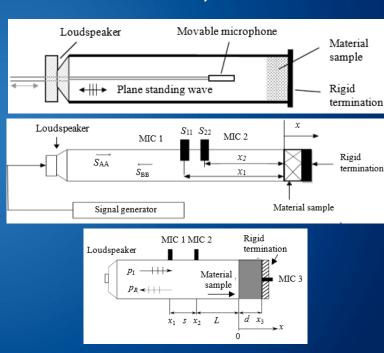
Applications:

- developing new sound absorption materials
- validation of prediction methods

Advantages:

- requires only small samples and relatively simple instrumentation
- time and costs of testing are significantly lower compared to the reverberation room method


Disadvantage:


small samples are not representative of large samples

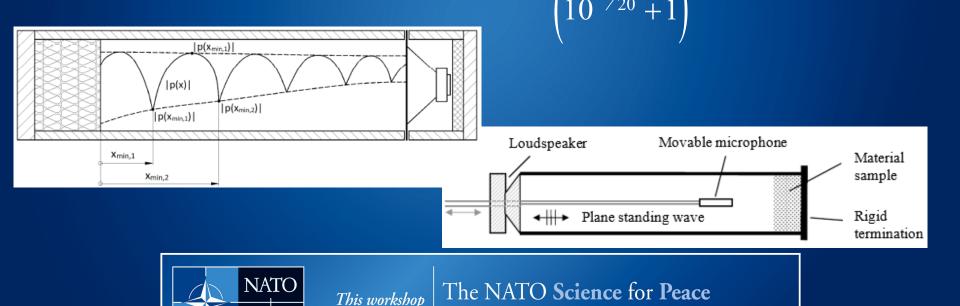
Different impedance tube methods:

- Standing wave ratio method with one microphone;
- Transfer function method with two/three microphones,
- Transfer function matrix method with four microphones;
- Transfer function method with two microflows;
- p-u method.

This workshop is supported by:

The NATO Science for Peace and Security Programme

Standing wave method with one microphone:


- ISO 10534-1 & ASTM C-384-04;
- measures: normal incidence sound absorption coefficient & sound reflection coefficient, the surface impedance & admittance.

Procedure:

- the material sample is mounted on one end of the impedance tube;
- a loudspeaker is mounted on the opposite end to generate an incident plane sinusoidal sound wave;
- the resulting sound wave is reflected from the material sample;
- the superposition of incident and reflected waves creates a standing wave in the impedance tube;

- the standing wave contains numerous nodes (min. SPL) and anti-nodes (max. SPL)
- max. SPL and min. SPL are measured by moving microphone along the length of the impedance tube

- the difference between max. SPL and min. SPL (ΔL) is then used to determine α_n $\alpha_n = \frac{4 \cdot 10^{\Delta L/20}}{\left(10^{\Delta L/20} + 1\right)}$

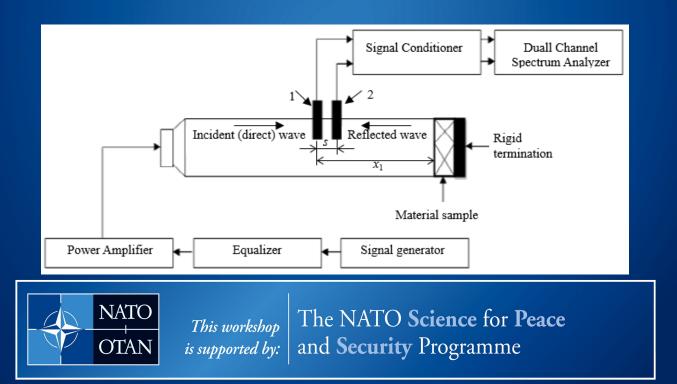
and Security Programme

OTAN

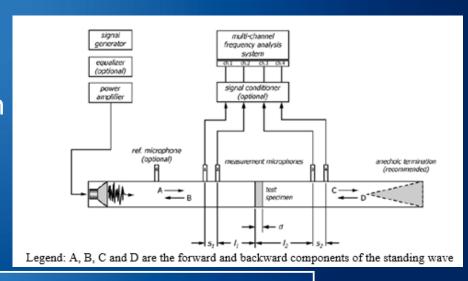
is supported by:

Standing wave method with two microphones:

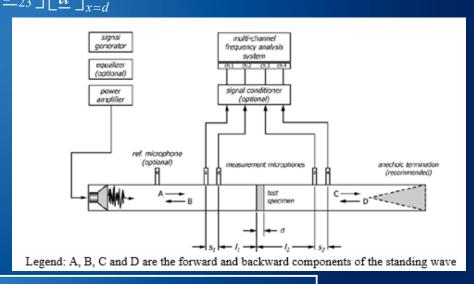
- ISO 10534-2 & ASTM 1050-19
- measures: normal incidence sound absorption coefficient & sound reflection coefficient, the surface impedance & admittance


Procedure:

- The setup involves mounting the material sample and sound source in the same manner as the one-microphone method;
- a loudspeaker generates a broadband sound wave;
- the standing wave is formed in the tube;


- simultaneously measuring the complex sound pressure levels at two spatially separated positions on the tube surface;
- calculate the complex acoustic transfer function H_{12} based on auto/cross spectrum (S_{11} , S_{22} , S_{12} , S_{21}) and α_n

$$\alpha_{n} = 1 - |\underline{r}|^{2} \quad \underline{r} = |\underline{r}| e^{j\phi_{r}} = \frac{\underline{H}_{12} - e^{-jks}}{e^{jks} - \underline{H}_{12}} e^{2jkx_{1}} \quad \underline{H}_{12} = \frac{\underline{p}_{2}}{\underline{p}_{1}} = \frac{\underline{S}_{12}}{\underline{S}_{11}} = \frac{\underline{S}_{22}}{\underline{S}_{21}} = \sqrt{\frac{\underline{S}_{12}}{\underline{S}_{11}} \cdot \frac{\underline{S}_{22}}{\underline{S}_{21}}}$$



- ASTM E2611-19
- measures: normal incident sound transmission loss, normal incidence sound absorption coefficient & sound reflection coefficient, surface impedance & admittance;
- similar to standing wave method with two microphones;
- material sample is mounted in the middle part of the tube
- uses four microphones (two on each side of material sample);
- more suitable for materials with low flow resistivity.

- the transfer function matrix (TFM) is derived from the measurements of complex sound pressures at the microphone positions
- TFM establishes the relationship between sound pressure and particle velocity on both the front and back surfaces of the test material sample $\begin{bmatrix} \underline{p} \\ u \end{bmatrix} = \begin{bmatrix} \underline{T}_{11} & \underline{T}_{12} \\ \underline{T}_{21} & \underline{T}_{23} \end{bmatrix} \begin{bmatrix} \underline{p} \\ u \end{bmatrix}$

 standing wave formed on both sides of the sample is decomposed into components A, B, C and D

– the components A, B, C and D are calculated based on:

$$\underline{A} = j \frac{\underline{H}_{1,\text{ref}} e^{-jkl_1} - \underline{H}_{2,\text{ref}} e^{-jk(l_1 - s_1)}}{2 \sin(ks_1)} \qquad \underline{C} = j \frac{\underline{H}_{3,\text{ref}} e^{jk(l_2 + s_2)} - \underline{H}_{4,\text{ref}} e^{jkl_2}}{2 \sin(ks_2)}$$

$$\underline{B} = j \frac{\underline{H}_{2,\text{ref}} e^{jk(l_1 + s_1)} - \underline{H}_{1,\text{ref}} e^{jkl_1}}{2 \sin(ks_1)} \qquad \underline{D} = j \frac{\underline{H}_{4,\text{ref}} e^{-jkl_2} - \underline{H}_{3,\text{ref}} e^{-jk(l_2 - s_2)}}{2 \sin(ks_2)}$$

 sound pressure and particle velocity on both faces of the sample are determined as:

$$\underline{p}_{x=0} = \underline{p}_{0} = \underline{A} + \underline{B}, \qquad \underline{p}_{x=d} = \underline{p}_{d} = \underline{C}e^{-jkd} + \underline{D}e^{jkd},$$

$$\underline{u}_{x=0} = \underline{u}_{0} = \frac{\underline{A} - \underline{B}}{\rho c}, \qquad \underline{v}_{x=d} = \underline{v}_{d} = \frac{\underline{C}e^{-jkd} - \underline{D}e^{jkd}}{\rho c}.$$

- the elements of the transfer function matrix are determined from two measurements with two different terminations:
 - anechoic termination or termination with minimum reflection (marked with "a"),
 - rigid or open termination, reflecting part of the incident wave (marked as "b").
- Then, TFM is:

$$T = \begin{bmatrix} \underline{p}_{0a} \, \underline{u}_{db} - \underline{p}_{0b} \, \underline{u}_{da} & \underline{p}_{0b} \, \underline{p}_{da} - \underline{p}_{0a} \, \underline{p}_{db} \\ \underline{p}_{da} \, \underline{u}_{db} - \underline{p}_{db} \, \underline{u}_{da} & \underline{p}_{da} \, \underline{u}_{db} - \underline{p}_{db} \, \underline{u}_{da} \\ \underline{u}_{0a} \, \underline{u}_{db} - \underline{u}_{0b} \, \underline{u}_{da} & \underline{p}_{da} \, \underline{u}_{0b} - \underline{p}_{db} \, \underline{u}_{0a} \\ \underline{p}_{da} \, \underline{u}_{db} - \underline{p}_{db} \, \underline{u}_{da} & \underline{p}_{da} \, \underline{u}_{db} - \underline{p}_{db} \, \underline{u}_{da} \end{bmatrix}$$

and

$$\alpha_{\rm n} = 1 - \left| \frac{\underline{T}_{11} - \rho c \underline{T}_{21}}{\underline{T}_{11} + \rho c \underline{T}_{21}} \right|^2$$

Characterization techniques for sound-absorption properties

Reverberation room method

- ISO 354 & ASTM C423
- measures: random incidence sound absorption coefficient
- Variations exist among the mentioned standards regarding:
 - required sample size and room volumes;
 - sample mounting procedures;
 - calculation methods.

Principle:

- the determination of the equivalent sound absorption of a reverberation room with and without a mounted test sample, denoted as A_0 and A_1 .
- Interupted noise method (ISO & ASTM) and integrated impulse response method (ISO).

The equivalent sound absorption area of the reverberation room for both the empty state and with a sample mounted is determined as:

$$A_{\text{ASTM}} = 0.921 \frac{Vd}{c}$$
 $A_{\text{ISO}} = \frac{55.3V}{cT_{\text{R}}} - 4Vm$

 The random incidence sound absorption coefficient of the sample can be calculated as:

$$\alpha_{\rm r} = \frac{A_{\rm l} - A_{\rm 0}}{S} + \frac{A_{\rm l}}{S_{\rm 0}}$$

Characterization techniques for sound-insulation properties

Impedance tube method

Transfer function matrix method with four microphones:

- ASTM E2611-19;
- measures: normal incident sound transmission loss
- the procedure is the same as for normal incidence sound absorption coefficient measurement

$$T = \begin{bmatrix} \underline{p}_{0a} \, \underline{u}_{db} - \underline{p}_{0b} \, \underline{u}_{da} & \underline{p}_{0b} \, \underline{p}_{da} - \underline{p}_{0a} \, \underline{p}_{db} \\ \underline{p}_{da} \, \underline{u}_{db} - \underline{p}_{db} \, \underline{u}_{da} & \underline{p}_{da} \, \underline{u}_{db} - \underline{p}_{db} \, \underline{u}_{da} \\ \underline{u}_{0a} \, \underline{u}_{db} - \underline{u}_{0b} \, \underline{u}_{da} & \underline{p}_{da} \, \underline{u}_{0b} - \underline{p}_{db} \, \underline{u}_{0a} \\ \underline{p}_{da} \, \underline{u}_{db} - \underline{p}_{db} \, \underline{u}_{da} & \underline{p}_{da} \, \underline{u}_{0b} - \underline{p}_{db} \, \underline{u}_{da} \end{bmatrix}$$

$$\tau_{n} = \frac{2e^{jkd}}{T_{11} + (T_{12} / \rho c) + \rho c T_{12} + T_{22}}$$

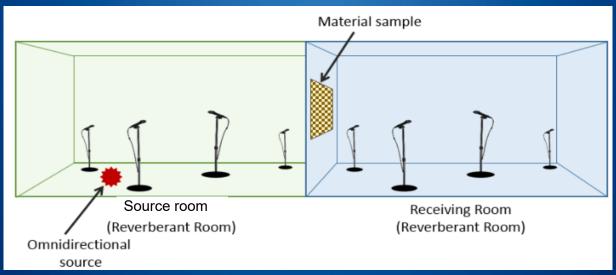
This workshop

The NATO Science for Peace is supported by: and Security Programme

Characterization techniques for sound-insulation properties

Two-reverberation room

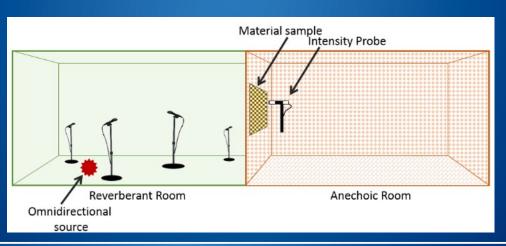
Two-reverberation room method:


- Impedance tube method is useful for:
 - open-cell porous materials with low to moderate air flow resistance;
 - limp porous materials with a low bulk modulus of elasticity.
- In cases where physical effects due to the bending stiffness of the material dominate sound insulation, the impedance tube may not accurately capture these characteristics.
- For these materials only the measurement of R, conducted for each frequency, according to the ISO 10140 series, is recommended.
- This method is particularly suitable for larger samples, such as double light partitions with infill composite materials.

116 m

- The sound source is placed in the source room with the sound source turned on;
- SPL are measured in both source and receiving rooms, with two source positions and five microphone positions;
- Sound source is turned on in receiving room, and T_2 is measured.

$$R = L_1 - L_2 + 10 \log \frac{S_{\text{ms}} T_2}{0.162 V_2}$$


Characterization techniques for sound-insulation properties

Sound intensity method

Sound intensity method.

- Measuring R involves using one reverberation room and one anechoic room or an ordinary room.
- Sound source is turned on in the source room.
- SPL is measured in the source room.
- Intensity measurements (mapping) are conducted near the material sample. $R = L_p L_I + 10 \log \frac{S_{12}}{S} 6$

Sound intensity method – advantages:

- Requires only one reverberation room.
- Enables the determination of the distribution of transmitted intensity over the surface of the partition, thereby revealing the presence of weak areas or leaks.
- It allows separate determination of the sound power radiated by the dividing partition and by other associated structures, facilitating the detection and precise quantification of flanking path transmission.

Conclusion

- Sound absorption coefficient can be determined by both the impedance tube and reverberation room methods.
- Disadvantages of reverberation room method include:
 - the inability to determine other acoustic characteristics of the sound absorption material;
 - requirement of large and expensive facilities;
 - need for large samples, which may not always be available, especially during the development phase of materials;
 - influence of the position and size of the sample on the results;
 - tendency for values to be overestimated and higher than 1, due to edge diffraction, non-diffuseness, and/or Sabine formulation.
- Advantages of reverberation room method:
 - provides the random incidence coefficient α , a parameter commonly used in space design to specify the absorption performance of materials.

Conclusion

- Advantages of the impedance tube method include:
 - ability to determine the normal sound reflection coefficient, surface impedance and surface admittance;
 - applicability in both the development phase of materials and validation of prediction methods;
 - requirement of only small samples;
 - relatively simple instrumentation can be placed in a normal room;
 - reduced time and costs of testing compared to the reverberation room method.
- Disadvantages of the impedance tube method are:
 - small samples may not fully represent the behavior of large samples;
 - inability to directly provide random incidence coeeficient α , although normal incidence coefficient α can be converted into random incidence coefficient α

existence of different approaches

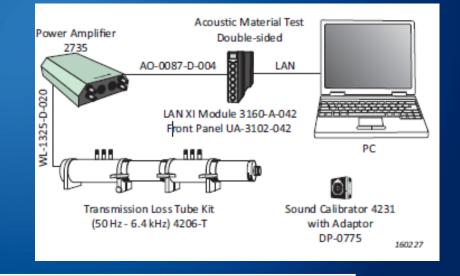
This workshop is supported by:

The NATO Science for Peace and Security Programme

- The sound transmission loss coefficient can be determined by the impedance tube method (for small samples),
 the two-reverberation room method and the sound intensity method (for large samples).
- While the two-reverberation room method is standardized, the sound intensity method offers more advantages.

Further activities:

- Testing the sound absorption characteristics and sound insulation characteristics of developed acoustic composite samples and comparing the results with experimental results for commercial acoustic material samples.
- The following methods will be used:
 - Transfer function matrix method with four microphones for small samples (to determine normal incidence sound absorption and reflection coefficients, surface impedance and admittance and normal incidence transmission loss)
 - Reverberation room method for large samples (to determine random incidence sound absorption and reflection coefficients)
 - Sound intensity method for large samples (to determine sound reduction index)


Equipment

nprogress

This workshop is supported by: The NATO Science for Peace and Security Programme