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PERFORMANCE CALCULATIONS OF 
ELECTROSTATIC PRECIPITATORS  
 
Abstract: Electrostatic precipitator (ESP), as a device used to 
decrease the pollution content in a flowing gas using an electrostatic 
force, can be designed to run at any desired efficiency. An electrostatic 
precipitator is highly efficient in collecting the nanoparticles that 
cannot be removed with the help of mechanical separators or wet 
scrubbers. The particle charging, migration velocity of charged 
particles and collection efficiency are described in this review, to show 
that many factors influence these three core values, which are critical 
to the reliability and performance of electrostatic precipitators. 

Keywords: electrostatic precipitator, collection efficiency, migration 
velocity, particle charging 

 
INTRODUCTION 
Particles contained in gases are collected using 
electrostatic precipitation (ESP) after passing through a 
strong electric field. When particles go through the 
electric field, they acquire electric charges and are 
attracted to collection electrodes. The particles are 
deposited on collection plates where they lose their 
charge. The collected material is periodically removed 
by cleaning mechanisms as it accumulates [1]. 

COLLECTION EFFICIENCY 

The schematic diagram of a dust stream flowing 
through an ESP is shown in Figure 1. Uniform gas 
velocity v  throughout the cross-section is assumed. 
The velocity of a charged particle suspended in a gas 
under the influence of an electric field is known as 
migration (or drift, terminal, settling) velocity, w . 
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Figure 1. Masses balance in ESP – top view 

The collection efficiency of an ESP can be derived by 
setting the masses balance on the input and output of 
two-dimensional fluid flow between two parallel plates. 
Let )(xC denote the concentration of dust particles that 

is constant in time, then 

[ ( ) ( )] 2
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C x C x x h d v t C x h x w t

         
 

  (1) 

The total height of ESP is h , i.e. elementary volume is 
V hd x   . 

In a limiting case, when x  tends to zero, (1) is 
reduced to the linear differential equation of the first 
order, 

 d ( ) 2
( )

d

C x h w
C x

x hd v
  . (2) 

Since S  and Q  are an area of the collection electrode 

and volumetric flow rate of a fluid, respectively, 

 2S h L , Q v hd , (3) 

the solution of the above equation can be put in the 
form 
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

 , 

where 0 (0)C C  is the inlet concentration. Also, let 

( )LC C L  be the outlet concentration, then the 

collection efficiency is 

 0
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which is known as Deutsch-Anderson equation [2, 3].` 

THEORETICAL MIGRATION VELOCITY 
OF CHARGED PARTICLES 
The motion of a particle in fluids is an extremely 
complex problem. Suppose that a particle has no 
angular velocity. Further, suppose that forces due to 
collisions, wall contact, friction, diffusion can be 
neglected. There remain only drag force, buoyancy 
force and inertial force, due to particle translational 
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motion, and gravitational and electrostatic forces due to 
existing fields [4] 

The theoretical value of velocity is calculated by a 
force balance between the electrostatic force attracting 
the particle toward the collecting electrode and the 
viscous forces impeding its travel through the gas. Note 
that the effect of buoyancy can be ignored because the 
density of particles is much greater than the density of 
carrier gas. For the drag force, we assume that the 
particles are very small spheres whose radii are a . One 
of the fundamental results in low Reynolds 
hydrodynamics is the Stokes solution for steady flow 
past a small sphere [5]. 

 6DF aw   (5) 

where   is s the dynamic viscosity. Stokes flow, also 

named creeping flow, is a type of fluid flow where 
advective inertial forces are small compared with 
viscous forces. As the particle gets smaller, the medium 
is no longer "continuous" to the particle and each 
molecule is no longer invisible to the particle. Gas 
molecules moving around the particle may miss the 
particle, which is known as a "slip". When the particle 
size becomes comparable with the gas mean free path, 
slip occurs and the expression for drag must be 
modified accordingly [7]. The needed correction to the 
Stokes drag force is 

 6
D

c

a
F w

C
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  (6), 

where 
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is dimensionless Cunningham slip correction factor [8] 
and / (2 )Kn a   is Knudsen number defined as the 

ratio of the molecular mean free path length to a radius 
of a particle. The constants , ,    are determined 

experimentally. Finally, the equation of motion of a 
charged spherical particle in an electric field is 
characterised by a differential equation, [4, 6] 

 d 6
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Taking 0)0( w  as the initial condition the solution to 

the above equation can be readily found, i.e. 
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w E t
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where   is the relaxation time, 
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Theoretically, after infinite time the particles are moved 
towards the collecting electrode with a velocity 

 
6

cqEC
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. (11) 

Practically, the particles reach this velocity after a very 
short period, i.e. exponential term in (9) can be 
neglected. Obviously, this is the same as the inertial 
term ignored at the very beginning in the equation (8), 
i.e. as if the electric and Stokes force were immediately 
equalized. 

SPHERICAL PARTICLE CHARGING 
A dielectric sphere of a radius a  and permittivity   is 
placed in a region of space containing an initially 
uniform electric field and the permittivity of which is 

1 , figure 2.  
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Figure 2. Spherical particle in an initially uniform electric 
field 

Two charging mechanisms occur: the first is field or 
impact charging, and the second by ion diffusion 
charging. Charging the particle by ion diffusion is 
independent of the external electric field but only the 
field due to the particle charge contributes to the 
particle’s electric field [9].  

The origin of the coordinate system is taken at the 
center of the sphere, and the electric field is aligned 
along the z -axis. An electrostatic problem involving 
linear, isotropic, and homogeneous dielectrics reduces 
to finding solutions of Laplace’s equation for the 
electric scalar potential 
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in each medium and joining the solutions in both media 
by means of the boundary conditions. From the 
azimuthal symmetry of geometry (no dependence on 
the azimuthal angle), the potential inside and outside 
can be expressed in terms of the Legendre polynomials 

 1 2( ) (cos )n n
n n nC r C r P    . (13) 

Since the potential is finite at origin and the distant 
potential only has Legendre polynomial of the first 
order, 
 


cos),(lim 00 rEzEr

r
 (14) 
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for the potential we obtain 
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The potential itself is continuous at ar  , 
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There are no free charges on the surface and the normal 
component of the displacement vector is continuous 
across the surface. The normal component being the 
radial direction and we have 

 1
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 (17) 

Two boundary conditions yield two equations for the 
two unknown coefficients which are easily solved to 
give 
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where  
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is Clausius-Mossotti factor, also known from Lorentz- 
Lorentz equation. The electric potential and field in the 
gas, ar  , in the vicinity of the charged particle, are 
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Since the potential from an electric dipole depends on 
2cos / r , [10], 
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we see that, as expected, a uniform field induces a 
dipole moment in the sphere. 

 3
1 1 04 ( , )p K a E   

  (24) 

The factor (19) confirms previous knowledge: when 

1  the induced dipole moment and the external 

field are parallel [12], while they become anti-parallel 

when surrounding gas is not air and when 1   figure 

3. 

For the particle in the air, 1 0   , polarization is 
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The potential inside the sphere, r a  
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produces a constant field in the z-direction 
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which corresponds to a polarization 

 0 0 0 0( ) 3 ( , )P E K E       
  

, (28) 

which are the results (25). The uniform external electric 
field induces the constant polarization inside a 
dielectric sphere. The induced polarization gives rise to 
surface charge which produces an opposing electric 
field.  
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Figure 3. Spherical dielectric particle after entering in an 
initially uniform electric field  - field lines; a) an air bubble 
in a dielectric; b)  a dielectric particle in an air 

 

The induced charge density at the surface of the sphere 
is 

 0 0 0ˆ ˆ 3 ( , ) cosb Pn P r K E       
 

 (29) 
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The bound charges on the one hemisphere are 

/2
2 2

0 0 0
0

2 sin d 3 ( , )b bq a a K E


          , (30) 

and there is an equal amount of negative charge on the 
other hemisphere. 

The external electric field also ionizes the dielectric 
region surrounding the sphere. Mobile charge carriers 
will be driven by the electric field to charge the sphere 
surface with an additional time-dependent charge ( )q t . 

A positive charge can only be deposited on the sphere 
where the radial component of the electric field is 
negative, due to negative surface charge on the sphere, 
and vice versa. The additional charge is distributed 
uniformly on the sphere surface and its effect on the 
potential is found by superposition, [11]. 
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The two adjacent charging regions are connected on the 
sphere at a coordinate r a  and c   , where the 

radial electric field is zero, 0rE  . The critical polar 

angle on the sphere is 
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where 
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is a saturation charge [13] and S is the surface of the 
sphere. Special field line, that passes through the 
critical point, separates field lines which starting at 
infinity and terminate on the sphere, from field lines 
that go around the sphere.  

The electric field inside a perfect conductor is always 
zero under the static situation, so the dielectric 
constant as a ratio of polarization density and electric field 
for a conductor is infinite, figure 4.  
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Figure 4. A perfectly conducting particle in an air 

From the above analysis, it is quite evident that, 
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 2
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The last expression is known as the Pauthenier equation 
[6, 13]. 

Finally, when field charging is applicable, the 
migration velocity is written as  

 20
0

0

2

2 c
a

w C E


 
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 (37) 

Migration velocities are difficult to estimate on a purely 
theoretical basis. 
 

CALCULATION 
The equation (4) provides an idea that the efficiency of 
filtering is essentially influenced by the surface of the 
electrodes and the flow velocity of the fluid. The large 
surface of collecting electrodes and creeping flow of 
fluid causes an exponential term to tend to zero, that is, 
efficiency tends to the unit. However, the theoretical 
migration velocity of the particles is very small. What's 
more, the calculated velocity is a hundred times smaller 
than that experimentally determined [6]. 

In practice, velocity is estimated from pilot studies or 
based on previous designs because particles are 
randomly shaped and in various sizes, electric fields are 
not constant and gas flows are not uniform. 

If the migration velocity is known, then Equation (4) 
can be rearranged to give the specific collecting area 
(SCA) 

 1
ln (1 )

S
SCA

Q w
     (38) 

Since the theoretical migration velocity is lower than 
the actual one, the application of the above formula 
yields quite satisfactory results. 
 

CONCLUSION 
Although the Deutsch-Anderson equation is widely 
used in the design of ESPs, its assumptions of 
monodisperse particles and constant migration velocity 
of particles in the ESP restrict its ability to provide 
accurate predictions. To make the Deutsch-Anderson 
equation more accurate, an effective migration velocity 

ew  can be substituted for the migration velocity w  in 

the equation [2]. The values for this variable are usually 
determined using data from pilot studies. 
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PRORAČUN PERFORMASNI ELEKROSTATIČKIH FILTARA 
 

Milica D. Radić, Dejan M. Petković, Dejan D. Krstić, Dejan N. Jovanović 
 
Rezime: Elektrostaitčki filtri (ESP) su uređaji koji se koriste za smanjenje zagađenja ukljanjajem čestica iz 
vazduha ili gasa korišćenjem elektrostatičke sile koji može biti dizajniran tako da radi sa željenom efikasnošću. 
Elektrostatički filter je visoko efikasan u sakupljanju nanočestica koje se ne mogu ukloniti uz pomoć mehaničkih 
separatora ili vlažnih skrubera. Naelektrisavanje čestica, brzina kretanja naelektrisanih čestica i efikasnost 
sakupljanja opisani su u ovom radu, kako bi pokazali da mnogi faktori utiču na ove tri osnovne vrednosti, koje su 
ključne za pouzdanost i performanse elektrostatičkih taložnika. 
 

Ključne reči: elektrostatički filtar, efikasnost sakupljanja, brzina kretanja čestica, naelektrisavanje čestica. 

 


