

AKINYEMI OLASUNKANMI ORIOLA¹ GIWA SOLOMON OLANREWAJU² ADEYEMI HEZEKIAH OLUWOLE³ AKINTAN ADESHINAAYOMI LAWAL⁴ MEBUDE OLADAPO⁵

¹⁻⁵Olabisi Onabanjo University, Ago-Iwoye, Nigeria, Faculty of Engineering, Department of Agricultural and Mechanical Engineering

¹ooakinyemi45@yahoo.com
²sologiwa2002@yahoo.com
³ahacoy@yahoo.com
⁴shinoxadex@gmail.com
⁵oladapo.mebude@gmail.com

FAULT TREE ANALYSIS OF FLY-OUTS IN METAL LATHE MACHINE OPERATIONS

Abstract: The most probable accident in lathe machining has been identified to be fly-outs. This study aim at determining the causal factors leading to fly-out accidents during lathe machining operations and subsequently determine the probability of occurrence of fly-out accident. Fault tree analysis (FTA) was used to identify risk factors. Boolean algebra equations were used to analyse the probability of fault occurrence. Monte Carlo simulation was carried out using OpenFTA software and the output of 1000 iterations was compared with the output of Boolean algebra. Safety intervention alternatives were evaluated by comparative analysis of before and after implementation of safety measures. Twenty four (24) minimum cut sets comprising of 21 basic events and 3 undeveloped events were identified. The top event has probability of 0.748 signifying high likelihood for fly-out. Monte Carlo simulation gave lower and upper bounds probabilities of 0.725 and 0.773, respectively. The event of the chuck key not pulled out of the chuck before machining begins was however noted to have the highest contribution to the occurrence of fly-out accident. The result of safety intervention alternatives revealed that the probability of fly-out becomes 0.192 with a safety benefit of N27, 800 after the first tier implementation. Other tiers of safety interventions will see the probability of fly-out go further down. By this, safety engineer has a scale for effectiveness of respective safety intervention programmes.

Key words: fly-out, accident, safety, intervention, lathe, machine, operation.

INTRODUCTION

Over the last three decades there were development in the maintenance and servicing industries, of a distinctive approach to hazards and failures that cause loss of life and property. This approach is commonly called 'loss prevention'. It involves putting much greater emphasis on technological measures to control hazards, accidents and on trying to get things right first time. The rapid development of new technology has essentially changed the nature of work and has increased the complexity of systems within many industries. Hence, the world becomes increasingly complicated. These complex systems require a combination between technical and human subsystems (Kletz, 1999). In this sense, the failure of a subsystem can often cause the failure of the entire system. Moreover, catastrophic breakdowns of these systems create serious threats, not only for those within the organization, but also for the surrounding public. Simultaneously, the accidents that occur in workplaces have also become more complex and in some cases more frequent.

In fact, increased technological dependence has led to bigger accidents, involving more people, and greater damage to property and the environment. It has become clear that such vulnerability does not originate from just human error, technological failures, or

environmental factors alone. Rather, it is the fixed organizational policies and standards which have repeatedly been shown to predate the catastrophe. Therefore, safety practitioners in recent years have begun to focus on the organizational values that might enhance risk and crisis management and safe performance in industries complex conditions. Some scholars (Simon and Leik 1999) believed that culture and technology actually go hand in hand. Culture consists of attitudes, perceptions, beliefs, and values, which need to be set in context. In the face of new mandates, it is believed that culture can play a vital role in helping organizations respond to the many safety challenges.

Most accidents in Nigerian industries are a direct result of not adhering to their established safety procedures, as well as lack of strong safety culture, safe working conditions, and employees' safe work attitudes and actions (Oyesola and Kola, 2014). Thus, the participation of all employees including managers and non-managers is vital in policymaking, establishing, and implementing a feedback system that drives continuously toward safety improvement in industrial companies to achieve a successful safety program. It must be mentioned that safety culture has an important role in reducing occupational accidents in industry. The identification of areas of vulnerability and of specific hazards is of fundamental importance in loss

prevention and safety. There is now available a whole battery of hazard identification methods which may be used to solve these problems (DOSH, 2008).

Human by default are susceptible to making errors and infact neglecting certain safety rules and regulations, a consequence of which could be so deadly both to themselves, their co-workers, machineries and the environment resulting in a possible loss of lives, property and revocation of their operating licenses. However, human error is just an aspect of safety as environment, hardware and other factors also serve as links to safe machining operations. With noise, numerous machines and a handful of people on the plant floor, one mistake can result in a serious incident that can cause personal injury and wreak havoc on production. Each year, millions of workers suffer from non-fatal workplace injuries, resulting in an annual cost of billions of dollars (EASHW, 2004). Outside the primary objective of reducing injuries to people or property, proving the value of a safety system is an ongoing challenge for safety professionals and risk managers. Many find it difficult to financially justify discretionary investments in safety-related trainings intended to reduce work-related injuries.

Safety investments greatly reduce cost of repairs. With an up-front investment in safety programs and safeguarding systems, the financial and employee impact of incidents that occur in the facility can be significantly diminished. Having realized this huge capital investment on safety, evaluation and reevaluation to justify this huge spending are necessary as well as analyzing historical accidents of ranging proportions from fatal, minor to near-misses with a view to tailor the existing safety policy to achieve the ultimate goal for which the entire concept of safety is based; to preserve lives and properties (SESR, 2012).

This paper seeks to conduct a hazard/causal factor identification analysis capable of leading to fly-outs on lathe machine operations and to evaluate in quantitative terms using Fault Tree Analysis (FTA). Also to determine the probability of failure by considering elemental failures that can lead to Fly-outs and recommend safety interventions, and to evaluate the effectiveness of such interventions. It will also examine how the probability of failure is affected by various safety interventions.

MATERIALS AND METHOD

Having consulted and reviewed series of safety reports associated to lathe operations of a case study workshop; this research seeks to consider *fly-outs* during machining operations. These fly-outs envisage the possibility of tool fly out during a machining process, work piece fly out as well as the effect of discontinuous chips (swarf) removal during operations that ranges from turning, shaping etc. to achieve the objectives using the tools described in sections 2.1, 2.2 and 2.3.

Fault Tree Analysis

Fault tree analysis (FTA) is used to investigate potential faults, its modes and causes and to quantify their contribution to system unreliability in the course of product design. FTA is a technique by which conditions and factors that can contribute to a specified undesired event are identified and organized in a logical manner and represented pictorially (Jane, 2012). FTA has been widely successfully used in various fields. Tetlow and Jenkins (2005) used it to visualise the importance of human factors for safe diving with closed-circuit rebreathers. Kumar and Sneh, (2011) applied it to analyse the reliability of piston manufacturing system while Hu et al., (2011) used FTA for hierarchical diagnosis model and sequential control of manufacturing system to mention a few.

Boolean Algebra Equations

With human Experts judgments, Boolean algebra equations were used to analyse the probability of fault occurrence. Boolean algebra is a devise for dealing mathematically with philosophical propositions which have only two possible values of TRUE or FALSE represented by the digits "0" and "1". It deals with the rules which govern various operations between the binary variables. "AND" operation describes events which can occur IF and only IF two (2) or more other events are TRUE. "OR" Operation describes events which can occur IF at least one (1) of the other events are TRUE (Ovidiu, 2003).

Monte Carlo Simulation

Monte Carlo simulation of the fault tree was conducted using the commercial software called "OpenFTA". 1000 Iterations were carried out and the output compared with the Boolean algebra equations. Monte Carlo simulation, also called probability simulation, is a technique widely used to understand the impact of risk and uncertainty in forecasting models. It can tell based on how the ranges of estimates are created, how likely the resulting outcomes are. Monte Carlo techniques are often the only practical way to evaluate difficult integrals or to sample random variables governed by complicated probability density functions (Cowan, 2011). OpenFTA is an advanced tool for FTA. With OpenFTA, superior graphical user interface, fault trees can be constructed and modified with ease (FSCL, 2005).

Safety Intervention Measure

The safety intervention alternatives were evaluated by comparative analysis of before and after implementation of safety measures. Safety intervention for the respective faults was examined to evaluate how well and how much the measure can bring about a reduction in the probability of the top-event. This tailors the research into the subject matter of identifying hazard conditions, sequence of accident, qualitative and quantitative evaluation, and finally, an

evaluation of the case-study's safety intervention programme to see how the intervention would reduce the probability of accident occurrence. The overall evaluation of safety in line with the subject matter of fly-out incorporates quantitative and qualitative evaluations to channel a course for safety intervention. This can be viewed as a case of sensitivity analysis whereby the effect of safety evaluation is examined on the probability of fly-out accidents to see how respective intervention reduces the probability of top-event occurrence.

To ascertain the effectiveness of a safety intervention program, an appraisal of the case-study safety intervention programme was carried out by firstly identifying areas that require intervention and by making appropriate recommendation.

RESULTS

Lathe Hazard Identification and Consequences Analysis

Safety concerns on lathe operations were considered under various headings of major lathe hazards and the commonest causes of death and injury from metal lathes were evaluated. These include:

- Entanglement of clothing in moving parts such as drive gears, chucks, lead and feed screws, and the work piece;
- Being hit by loose objects on the lathe such as chuck keys, tools or swarf;
- Entanglement from inappropriate tooling and polishing techniques;
- Being struck by a workpiece that has not been adequately secured in the lathe or is oversized.

Figure 1 shows the zones of metal turning lathe hazards. Six hazard zones have been identified. Each zone was analyzed to include the possible consequence (e.g. entanglement) of the hazard and their recommended controls. Table 1 contains a comprehensive hazard identification and consequences analysis of identifiable hazards during lathe operations

Qualitative Safety Evaluation: Fault Tree Construction

The child root for a tool fly-out is as represented Figure 2. Seven causal factors capable of triggering a tool fly-out during machining operations on a lathe were identified as chuck fault, workpiece holding fault, tool post fault, coolant fault, improper operating speed, safety guards fault, swarf guard and chuck guard and Improper mounting.

Further analysis of root/intermediate events into minimum cut sets i.e. basic events that could lead to the child node event; twenty four (24) basic events are identified and presented in fault tree in Figure 3. Probabilities for the identified failures are presented in Table 2.

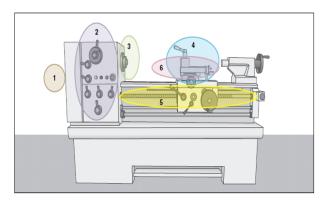


Figure 1. Hazard Zones of Metal Turning Lathe Machine

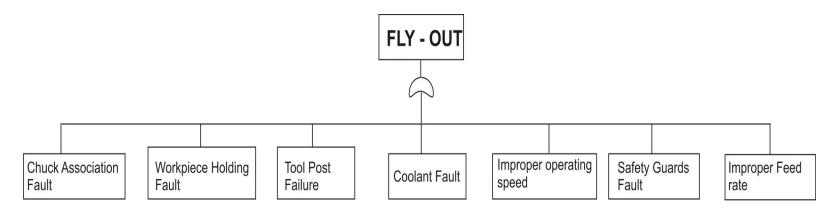


Figure 2: Hazards/causal Factors Capable of Triggering a Tool Fly-out During Machining Operations on a Lathe.

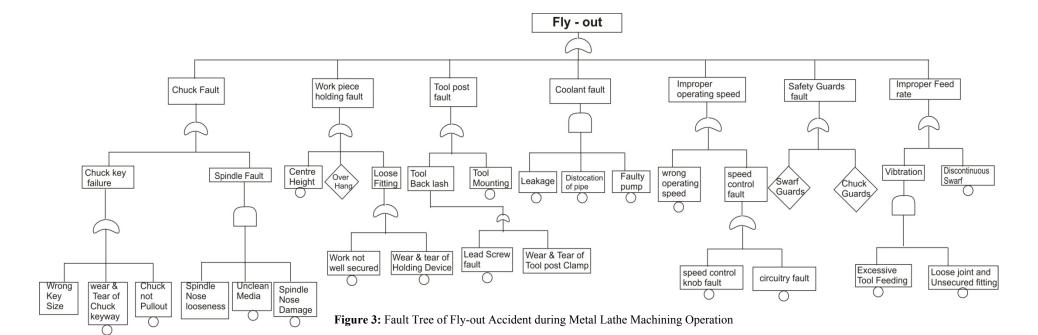


 Table 1. Lathe Operations Hazards and Consequences

Table 1. Lathe Operati	ons Hazards and Consequences	Exposed lead and feed	Machinists can become entangled
Hazards	Possible consequence	screws (assessment of	in exposed lead and feed screws
Zone 1	1 ossible consequence	risk will need to include	when the lathe is in operation,
Workpiece beyond the	During spindle rotation, bar can	the speed at which the lead and feed screws	particularly if the lathe is being used by a number of users with
headstock.	bend and strike machinists	travel).	various levels of experience.
	nearby.	Zone 6	various is vers of emperiors.
Zone 2		Unguarded protrusions	Machinists can become entangled
Exposed drive	Machinists can become entangled	on the workpiece.	on protrusions on the workpiece
mechanisms (pulley,	in pulleys, belts or gears when		being turned.
belts, gears). Lathe controls can only	lathe is in operation. Machinists can become entangled	Coupling and clamps	Machinists can become caught on
be reached by passing	in unguarded drive mechanisms,	used on the lathe are damaged or have catch	coupling and clamps that are poorly maintained or have
hand through working	chuck, chuck assembly or	points.	protrusions.
zone.	workpiece when the lathe is in	Unsupported	Unsupported workpieces can
	operation.	workpieces.	become loose, striking
Lack of function	Machinists can activate incorrect	•	machinists.
markings on controls.	controls resulting in an unplanned	Machining process	Machinists can become entangled
Placements of controls	function. Machinists can activate incorrect	produces continuous or	in turning cuttings.
do not follow the	control resulting in an unplanned	unraveled cuttings.	Hannatari I handina C
machining process.	function.	Removing metal shavings, cuttings and	Unprotected handling of shavings, cutting and swarf can
Unsecured tools and	Stored objects can fall onto the	swarf from machining	result in lacerations.
objects stored or placed	spinning chuck and be propelled	area with hands.	
on the headstock.	at the operator or nearby	Neighboring	Swarf, cuttings or workpieces can
7 4	machinists	workspaces are exposed	become projectiles and strike
Zone 3 Exposed chuck.	Machinists can become entangled	to swarf, cuttings or	nearby machinists, causing
Exposed chuck.	on uneven surface of chuck or	workpieces during the	injuries such as lacerations and
	workpiece when spinning.	machining process. Frequent traffic (human	fractures. While operating the lathe, the
Chuck key left in chuck.	Machinists near lathe can be	and machinery) passing	operator can be bumped or
,	struck by key when projected	through the work area	startled by passing traffic, causing
	from the lathe.	near the operator.	the operator to come into contact
Jaws of chuck unable to	Machinists can be struck by		with the lathe.
clamp workpiece	workpiece not securely held in the chuck.	Incorrect methods used	Machinist can become entangled
securely. Chuck has not been	Machinists can be struck by	for polishing workpieces with emery cloth.	in the lathe.
adequately secured to	chuck not securely held in the	Others	
the spindle.	spindle.	Lack of or poorly placed	Operator is unable to stop the
Mounting and removing	Machinists can sustain	emergency stop	lathe in case of an emergency.
heavy chucks and face	musculoskeletal or crushing	button/pedal that results	ي ،
plates.	injuries when changing heavy	in immediate standstill	
TT C 1 . 1 . (1 . () -	chucks and faceplates.	of lathe operation.	
Use of a chuck that is not compatible with	Use of incorrect chucks can result in the chuck or workpiece	Loose clothing, cuffed	Loose clothing, accessories and
lathe and/or task	becoming loose and striking	or rolled back sleeves, neckties, jewelry	hair can become entangled in moving parts of the lathe, chuck
specifications.	machinists	(including watches) and	assembly or workpiece.
Chucks and face plates	Machinists can become caught on	long hair.	
used on the lathe are	chucks and faceplates that are	Environment	
damaged or have catch	poorly maintained or have	Inappropriate type and	The flashing effect of fluorescent
points.	protrusions.	position of lighting.	light can make a spinning lathe
Oversized workpiece in self-centering chuck	Chuck jaws in full extension to allow for oversized workpieces		appear to have stopped. This can
(three-jaw chuck)	can be propelled from the lathe		lead to machinists' entanglement. Lighting placed over the lathe can
(j)	when operated.		be struck by projectiles from the
Zone 4			machining process. Machinists
Objects (e.g. cutting	Unsecured objects can become		nearby can be injured by the light
tools) unsecured on	projectiles when the lathe is		shattering.
carriage (including tool	started, possibly striking	TT (:1 1 : : :	N 1
post) or swarf Worn or damaged tools	machinists. Use of worn or damaged tools can	Untidy and unorganized	Machinists can slip or trip on
being used on the lathe.	result in tool failure and can	working Environment.	cutting oils, swarf or cuttings that are not cleaned from the floor.
come about on the lattle.	become projectiles or create	Environment.	Machinists can also trip over
	irregular or long cuttings that can		lathe parts or workpieces that are
	lead to lacerations.		not returned to storage areas.
Zone 5			

Probability of failure P (F) = $1 - (1 - V_1) \times (1 - V_2) \times (1 - V_3) \times (1 - V_4) \times (1 - V_6) \times (1 - V_{10}) (1 - V_{12}) \times (1 - V_{13}) \times (1 - V_{15}) \times (1 - V_{17}) \times (1 - V_{19}) \times (1 - V_{20}) \times (1 - V_{21}) \times (1 - V_{22}) \times (1 - V_{23}) \times (1 - V_{24}) \times (1 - V_8 * V_{14} * V_{18}) \times (1 - V_{11} * V_{16}) \times (1 - V_5 * V_7 * V_9)$

Table 2 presents the faults and the respective probabilities of faults. The following faults namely: Chuck Associated Fault, Work holding Fault, Tool Post Fault, Coolant Fault, Wrong Machining Speed, Safety Guards and Improper Feed rate Fault respectively, are the faults having the capability to initiate the occurrence of fly-out. The probabilities of these faults are 0.720001, 0.050, 0.035, 0.0000005, 0.015, 0.020 and 0.01515, respectively. The probabilities of these faults reveal that chuck associated failure has the highest likelihood/probability of initiating the top event having a probability of failure of 0.720001, followed by work holding faults with a probability of 0.050, tool post failure with a probability of 0.035, safety guards failure with a probability standing at 0.20 followed by the fault from improper feed rate with a probability of 0.01515 and FINALLY faults from *wrong machining speed* and *coolant fault* having probabilities of 0.015 and 0.0000005, respectively. It is noteworthy that coolant failure has the least probability and hence, it has the least capacity of initiating a fly-out during lathe operations

Further presented in Table 3 is the result of basic event analysis and their respective importance represented as a percentage of the overall probability of top-event. A graphical representation is also provided in Figure 4. The result here reveals that V4 (event of chuck not being pulled out before machining operation begins) has the highest importance (93.52%) and if any safety intervention is to be justified, it must be centralized on the primary event with the highest importance. V₄ represents the first tier of safety intervention. Furthermore, V_2 , V_3 , V_6 , V_{15} , V_{17} and V_{20} having an importance of 2% apiece are the next areas of priority (second tier of intervention) in terms of safety intervention. However, V₁, V₉, V₁₁, V₁₃, V₂₁, V₂₂, V₂₃ and V₂₄ have lesser importance, with their importance standing at 1.34% apiece. V₁₃ with an importance of 0.67% can also be merged with the events of 2%. These events are hence assigned for third tier intervention. Other events have 0% importance and no major intervention is needed.

Table 2. Probabilities of Failure of Basic Events

•	Event ID	Type	Description	Failure rate/Unit time.
$\overline{V_1}$	CCT	Basic Of Event	Circuitry Fault	0.010
$\overline{V_2}$	CHG	Underdeveloped	Chuck Guard Fault	0.015
$\overline{V_3}$	CHT	Basic	Centre Height Fault	0.015
$\overline{V_4}$	СРО	Basic	Chuck Not Pulled Out	0.700
V_5	DP	Basic	Dislocation of Pipe	0.010
V_6	DSWARF	Basic	Discontinuous Swarf	0.015
$\overline{V_7}$	PUMP	Underdeveloped	Faulty Pump	0.010
V_8	LB	Basic	Spindle Nose Looseness	0.010
V_9	LK	Basic	Leakage	0.005
V_{10}	LSF	Basic	Leadscrew Fault	0.010
$\overline{V_{11}}$	LSNESS	Basic	Loose Joints and Unsecured Fitting	0.015
$\overline{V_{12}}$	OH	Underdeveloped	Overhang	0.010
V_{13}	SCKF	Basic	Speed Control Knob Fault	0.005
V_{14}	SND	Basic	Spindle Nose Damage	0.010
V ₁₅	SWG	Underdeveloped	Swarf Guard	0.015
V ₁₆	TFEEDING	Basic	Excessive Tool Feeding	0.010
V_{17}	TM	Basic	Tool Mounting	0.015
V_{18}	UN	Basic	Unclean Media	0.010
V ₁₉	WK	Basic	Wrong Key Size	0.010
V_{20}	WNS	Basic	Work Not Well Secured	0.015
V_{21}	WS	Basic	Wrong Operating Speed	0.010
V_{22}	WT1	Basic	Wear And Tear of Chuck Keyway	0.010
V_{23}	WT2	Basic	Wear And Tear of Holding Device	0.010
V_{24}	WT3	Basic	Wear And Tear of Tool Post Clamps	0.010

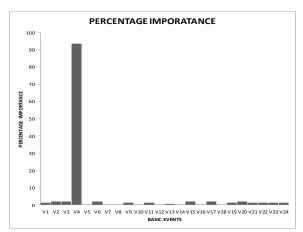


Figure 4. Probabilities of Basic Events

Table 3. Primary Event Analysis

Event	Description	Importance	Failure contribution
		(%)	
V_4	Chuck Not Pulled	93.52	7.000000E-001
	Out		
V_2	Chuck Guard	2.00	1.500000E-002
	Fault		
V_3	Centre Height	2.00	1.500000E-002
	Fault		
V_6	Discontinuous	2.00	1.500000E-002
	Swarf		
V_{15}	Swarf Guard	2.00	1.500000E-002
V_{17}	Tool Mounting	2.00	1.500000E-002
V_{20}	Work Not Well	2.00	1.500000E-002
	Secured		
V_1	Circuitry Fault	1.34	1.000000E-002
V_9	Leakage	1.34	1.000000E-002
V_{11}	Loose Joints and	1.34	1.000000E-002
	Unsecured Fitting		
V_{19}	Wrong Key Size	1.34	1.000000E-002
V_{21}	Wrong Operating	1.34	1.000000E-002
	Speed		
V_{22}	Wear And Tear of	1.34	1.000000E-002
	Chuck Keyway		
V_{23}	Wear And Tear of	1.34	1.000000E-002
	Holding Device		
V_{24}	Wear And Tear of	1.34	1.000000E-002
	Tool Post Clamps		
V_{13}	Speed Control	0.67	5.000000E-003
	Knob Fault		
V_{10}	Leadscrew Fault	0.02	1.500000E-004
V_{16}^{16}	Excessive Tool	0.02	1.500000E-004
10	Feeding		
V_5	Dislocation of	0.00	5.000000E-007
5	Pipe		
V_7	Faulty Pump	0.00	1.000000E-006
V_8	Spindle Nose	0.00	5.000000E-007
Ü	Looseness		
V_{12}	Overhang	0.00	5.000000E-007
V_{14}	Spindle Nose	0.00	1.000000E-006
. 14	Damage		
V_{18}	Unclean Media	0.00	1.000000E-006

Safety Intervention Benefits

Table 4 is a tabulation of the basic events, their respective description and safety intervention recommendation. In this present study, safety interventions were categorised as follow:

- First tier safety intervention; training, supervision, inspection and procurement and installation (self-ejecting chuck key procurement etc.);
- Second tier safety intervention; preventive maintenance and quality of maintenance;
- Third tier safety intervention; intermittent checklisting and supervision

Assuming the expected cost of fly-outs injury ranges from simple laceration to complete facial surgery is \$\frac{1}{2}\$50, 000, the resulting citicatility C of a lathe machining fly-outs injury is:

$$C = P(F)(\$50,000)$$

 $= 0.748 \times 50000$

= ₩37, 400

The event that machinist are expertly trained, supervised and monitored that chuck keys are not left in the chuck before machining starts would reduce the probability of "chuck not pulled out" from 0.7 to 0.21. However, the other failure modes could still occur and the probability of fly-outs reduces to 0.192 with a new criticality of N9, 600. The benefits or savings of the implementation of the safety intervention is the decrease in the criticalities i.e.

Safety benefits =
$$\$437,400 - \$9,600$$

= $\$427,800$

Monte Carlo Simulation

Using "OpenFTA", the simulation results are as presented below:

- 1. Number of primary events = 24;
- 2. Number of tests (iterations) = 1000;
- 3. Number of system failures = 976;
- 4. Probability of at least one component failure = 0.768 (exact) and
- 5. Probability of top event = 0.749 (+/-0.024) i.e. 0.725 and 0.773.

The events, descriptions and failure contributions are shown in Table 5.

The Boolean algebra analysis reveals that the top-event has a probability of 0.748; however, the Monte Carlo analysis offered a range of probability in which the top event can happen (0.725 and 0.773). It is noteworthy at this stage that the Boolean algebra result is within the range of probabilities obtained using Monte Carlo simulation. However, the percentage importance as well as the fault contribution of some cut-sets suffered a reduction while some remained constant after 1000 simulations.

 Table 4. Basic Events and Nature of Safety Intervention and Recommendation

Event	Description	Safety Intervention and Recommendation
V_1	Circuitry Fault	Pro-active preventive maintenance of the machine, electrical component
		inspection and check-listing.
V_2	Chuck Guard Fault	Installation of chuck guards
		Employers must ensure guarding does not stop workers using the lathe
		in a safe manner or block the view of the task.
		Where multiple chucks are used, guarding should cover the swing of the
		lathe, not the size of a chuck.
V_3	Centre Height Fault	Use a bar feed tube to hold workpiece that extends beyond the
		headstock.
		Guard bar feed weights with hinged covers extending to the floor.
		Modify the lathe speeds (RPM) to ensure bar will not bend when
		machined.
V_4	Chuck Not Pulled Out	Install barriers to stop workers entering space around headstock. Adequate training of machinists and proper supervision of machining
V ₄	Chuck Not Pulled Out	operations.
		Use of spring-loaded chuck key.
		Use of self-ejecting chuck key.
		Use of extended key design that stops interlocked guard being lowered
		when inserted in chuck.
V_5	Dislocation of Pipe	Intermittent checklist should be drafted to monitor the position of the
. 3	r.	pipe per time during machining operations.
V_6	Discontinuous Swarf	Manufacturer specified federates should be adhered to and swarf should
Ü		be cleared timely.
V ₇ V ₈	Faulty Pump	Preventive maintenance.
V_8	Spindle Nose Looseness	Pro-active preventive maintenance and specific level inspection for
		vibration.
		Use of retaining nut with left-hand thread.
V_9	Leakage	Training to ensure machinists pay absolute concentration on the task
		before them so they can notice leakages on time.
$\frac{V_{10}}{V_{11}}$	Leadscrew Fault	Where appropriate, ensure lead and feed screws are guarded
\mathbf{v}_{11}	Loose Joints and Unsecured Fitting	Preventive maintenance and proper inspection practices.
V ₁₂	Overhang	Retightening of bolts, couplings and replacement of worn out parts. Use workpieces of minimum length to reduce the amount of bar
v 12	Overnang	protruding from headstock.
		Use of fixed or travelling steadies to support long, slender workpieces
		between centres or to support outer end of long piece held in chuck for
		drilling or boring.
V ₁₃	Speed Control Knob Fault	Preventive maintenance.
	•	Ensure control functions are clearly displayed.
		Ensure operators are adequately trained in what order to use controls.
V ₁₄	Spindle Nose Damage	Use of retaining nut with left-hand thread and tightened with a torque
		wrench to manufacturers specification.
V_{15}	Swarf Guard	Ensure swarf guards are installed and made operatable so as not to
		hinder machining operations. Also, ensure swarf handles and buckets
* 7		are used when cleaning swarf, shaving and cuttings from lathe
V_{16}	Excessive Tool Feeding	An excessive tool feeding set up vibration and transmits the impulse to
		the tool post, the chuck and the spindle thereby loosening the couplings.
		Machinists should be trained to feed at optimal levels to avoid the
17	Tool Mounting	impulse transfer. Ensure worn or damaged tools are removed and not used.
V_{17}	1001 Wounting	Ensure the tool is properly secured on the tool post.
V ₁₈	Unclean Media	Proper maintenance work and housekeeping.
V ₁₈	Wrong Key Size	Use of manufacturer specified key size for respective chucks.
V ₂₀	Work Not Well Secured	Training; Chuck type and size selection should be given priority in line
• 20	Jili 1.00 Jil boodied	with the machining operation to be carried out. Rightful selection of
		chuck key to ensure the chuck jaws fully grip the work piece.
V ₂₁	Wrong Operating Speed	Training of machinists to adhere to RPMs as stipulated in the
• 41		manufacturer's manual.
V ₂₂	Wear And Tear of Chuck Keyway	Ensure worn or damaged tools are removed and not used.
V ₂₃	Wear And Tear of Holding Device	Ensure worn or damaged tools are removed and not used.
V ₂₄	Wear And Tear of Tool Post Clamps	Ensure worn or damaged tools are removed and not used.

Table 5. Monte Carlo Simulation Results

Event Descripti V ₄ Chuck N Out V ₁₅ Swarf Gu V ₂ Chuck G	ot Pulled 93.34 uard 2.56 uard Fault 2.46 nuous 2.36	Failure contribution 7.00E-01 1.92E-02 1.84E-02 1.77E-02
V ₄ Chuck N Out V ₁₅ Swarf Gu	ot Pulled 93.34 uard 2.56 uard Fault 2.46 nuous 2.36	7.00E-01 1.92E-02 1.84E-02
V ₄ Out V ₁₅ Swarf Gu	93.34 hard 2.56 hard Fault 2.46 huous 2.36	1.92E-02 1.84E-02
V ₁₅ Swarf Gu	2.56 uard Fault 2.46 nuous 2.36	1.92E-02 1.84E-02
13	uard Fault 2.46 nuous 2.36	1.84E-02
V ₂ Chuck G	2.36	
	2.36	1.77E-02
V ₆ Disconting Swarf	. , 1	1.//11/02
V ₁₁ Loose Jo Unsecure	9.95	1.69E-02
V ₁₉ Wrong K	ey Size 1.54	1.15E-02
V ₂₀ Work No Secured	t Well 1.43	1.08E-02
V ₂₃ Wear An Holding	d Tear of Device 1.43	1.08E-02
V ₁ Circuitry	Fault 1.34	1.15E-02
V ₁₇ Tool Mo	unting 1.33	9.98E-03
V ₉ Leakage	1.23	9.21E-03
V ₃ Centre H Fault	eight 1.13	8.45E-03
V ₂₄ Wear An Tool Pos	d Tear of t Clamps 1.13	8.45E-03
	d Tear of	7.68E-03
V ₁₃ Speed Co Knob Far		4.61E-03
V ₅ Dislocati	on of Pipe 0.00	0.00E+00
V ₇ Faulty Pι	ımp 0.00	0.00E+00
V ₈ Spindle 1 Loosenes	0.00	0.00E+00
V ₁₀ Leadscre	w Fault 0.00	0.00E+00
V ₁₂ Overhang	g 0.00	0.00E+00
V ₁₄ Spindle N Damage	Nose 0.00	0.00E+00
V ₁₆ Excessiv Feeding	e Tool 0.00	0.00E+00
V ₁₈ Unclean	Media 0.00	0.00E+00
V ₂₁ Wrong C Speed	perating 0.00	0.00E+00

Table 6 provides the difference between Boolean algebra result and Monte Carlo result for 1000 iterations.

Table 6. Deviation of Boolean Algebra Result and Monte Carlo Simulation Results

Event	Description	Importan	Failure
		ce (%)	contribution
V_1	Circuitry Fault	0	0
V_2	Chuck Guard Fault	0.46	0.23
V_3	Centre Height Fault	-0.87	-0.435
V_4	Chuck Not Pulled Out	-0.18	-0.00192
V_5	Dislocation of Pipe	0	0
V_6	Discontinuous Swarf	0.36	0.18
V_7	Faulty Pump	0	0
V_8	Spindle Nose Looseness	0	0
V_9	Leakage	-0.11	-0.08209
V_{10}	Leadscrew Fault	-0.02	-1
V_{11}	Loose Joints and Unsecured Fitting	0.91	0.679104
V_{12}	Overhang	0	0
V_{13}	Speed Control Knob Fault	-0.06	-0.08955

V_{14}	Spindle Nose Damage	0	0
V_{15}	Swarf Guard	0.56	0.28
V_{16}	Excessive Tool Feeding	-0.02	-1
V_{17}	Tool Mounting	-0.67	-0.335
V_{18}	Unclean Media	0	0
V_{19}	Wrong Key Size	0.2	0.149254
V_{20}	Work Not Well Secured	-0.57	-0.285
V_{21}	Wrong Operating Speed	-1.34	-1
V ₂₂	Wear And Tear of Chuck Keyway	-0.32	-0.23881
V_{23}	Wear And Tear of Holding Device	0.09	0.067164
V_{24}	Wear And Tear of Tool Post Clamps	-0.21	-0.15672

DISCUSSION

Accident and safety upheavals offer a great risk to organizational life in terms of preserving its much revered assets such as lives and properties. Machining operations can be entirely safe. However, humans may not adhere strictly to instructions and procedures. The idea of safety engineering hence, is not to make a vulnerable machinist pay the dare price of life threatening injury, rather, keeping him safe despite his shortfalls and from surrounding hazards. The nature of accidents has been discovered to be a chain reaction, with each basic event setting off a bigger fault, transmitting the fault over and in that manner causing an undesirable event - accident.

The hazard analysis conducted by this study on lathe operations using root cause analysis of accidents recorded for a case study of machine shop (Etherton et al., 2015), and expert narrations to determine the pattern and mode of accidents incumbent on lathe operations revealed that fly-outs and entanglements are the most widely occurring accidents. With FTA of the causal factor; basic and intermediate events that could lead to a Fly-out, twenty four (24) basic events were identified. They include: Circuitry fault, Chuck Guard fault Centre-Height fault, Chuck not pulled out, Dislocation of pipe, Discontinuous swarf, Faulty pump, Spindle nose looseness, Leakage, Leadscrew fault, Loose joints and unsecured fittings, Overhang, Speed control knob fault, Spindle nose damage, Swarf guard, Excessive tool feeding, Tool mounting, Unclean media, Wrong key size, Work not well secured, Wrong operating speed, Wear and Tear of Chuck keyway, Wear and Tear of Holding device, Wear and Tear of tool post clamps.

In this present study, the use of Boolean algebra showed that the top event has probability of 0.748 for occurrence. A Monte Carlo simulation was equally carried out in furtherance to this cause, the top event was observed to have an lower bound and upper bound of 0.725 and 0.773 respectively. This therefore captured the probability obtained using Boolean algebra. Evidently, the value obtained from the use of Boolean algebra is well in within the results obtained via the use of Monte Carlo simulation. The event of the

chuck key not being pulled out of the chuck before the commencement of machining was noted to have highest probability of occurrence (0.7) hence, it has the highest contribution to the top-event. Work-holding and loose fitting are other faults having high contribution to the occurrence of top-event. Percentage importance of respective faults was used as the basis for the application of safety intervention. Safety interventions identified were training, safety equipment procurement, guards, condition monitoring, inspection and preventive maintenance, intermittent check-listing and machining operation supervision. With the implementation of the first tier of safety intervention (training), the FTA revealed that if chuck-fly out can be entirely eliminated by training machinists to use the right size of chuck and chuck key, and remove the chuck key before the commencement of machining operation, the probability of chuck not pulled out is 0.21, then the probability of top event occurring will be considerably lesser and will only amount to 0.192. Consequently, the criticality of lathe machining fly-out injury decreases from N37, 400 to N9, 600 with a safety benefit of N27, 800.

CONCLUSION

The study conducted a Fault Tree Analysis in metal lathe machining operation. Twenty four basic events leading to the occurrence of fly-out accident were identified. This includes Circuitry fault, Chuck Guard fault Centre-Height fault, Chuck not pulled out, Dislocation of pipe, Discontinuous swarf, Faulty pump, Spindle nose looseness, Leakage, Leadscrew fault, Loose joints and unsecured fittings, Overhang, Speed control knob fault, Spindle nose damage, Swarf guard, Excessive tool feeding, Tool mounting, Unclean media, Wrong key size, Work not well secured, Wrong operating speed, Wear and Tear of Chuck keyway, Wear and Tear of Holding device, Wear and Tear of tool post clamps.

The result of FTA revealed that fly-outs are the most widely occurring accidents during metal lathe machine operations with a probability of 0.748. Monte Carlo analysis of the FTA shows the probability of fly-outs having lower and upper bounds of 0.725 and 0.773, respectively. The event of the chuck key not being pulled out of the chuck before the commencement of machining was noted as the event with the highest probability of occurrence contributing to the top-event. Safety intervention alternatives were implemented and the result revealed that the probability of fly-out becomes 0.192 with a safety benefit of \$\frac{1}{2}\$27, 800. Increased safety benefits can be achieved if other safety intervention alternatives are further implemented.

REFERENCES

- [1] Amit K. and Sneh L. (2011). Reliability Analysis of Piston Manufacturing System. Journal of Reliability and Statistical Studies Vol. 4(3) pp. 43-55.
- [2] Cowan G. (2011). Monte Carlo Techniques. Available at www.Pdg.ibi.gov/rpp2012-rev-monte-carlo-techniques. Retrieved March7, 2015.
- [3] Department of Occupation Safety and Health (DOSH). (2008). Guidelines for Hazard Identification, Risk Assessment and Risk Control. JKKP DP 127/789/4-47. ISBN 978-983-2014-62-1, Malaysia. Available at www.fbme.utm.my. Retrieved January 12, 2012.
- [4] Etherton J. R., Trump T. R. Jensen R. C. (1981). The Determination of Effective Injury Control for metal-Cutting Lathe Operators. Scandinavia Journal of Environmental Health. Vol 4. pp. 115-119.
- [5] European Agency for Safety and Health at Work (EASHW). (2004). Building in Safety. European Construction Safety Summit. Bilbao, Spain. Available at osha.europa.eu/.../index.htm. Retrieved July 3, 2010.
- [6] Formal Software Construction Limited (FSCL). (2005). Fault Tree Analysis for the most demanding studies. Available at www. Openfta.com. Retrieved March 7, 2015.
- [7] Hu, W., Starr, A.G. and Leung, A.Y.T. (2011). Operational Fault Diagnosis for Manufacturing system. Manchester School of Engineering, University of Manchester, Manchester, M13 9Pl, UK.
- [8] Jane, M. (2012). An Introduction to Fault Tree Analysis (FTA). The University of Warwick. pp. 1-18.
- [9] Kletz, T.A. (1999). The origin and History of Loss Prevention. Science Direct. Vol. 77(3) pp. 109-116.
- [10] Oyesola, A. and Kola, O.O. (2014). Industrial Accident and Safety Hazards at the Workplace: A Spatio-Physical Workplace Approach. Mediterranean Journal of Social Sciences. Vol 5(20) pp. 2949-2953.
- [11] Ovidiu G. (2003). Digital Electronics. Available at www.eeng.dcu.ie. Retrieved February 2015.
- [12] Samsung Electronics Sustainability Report (SESR). (2012). Available at www.samsung.com/us/aboutsamsung/sustainability/soci alcontrib. Retrieved August 5, 2012.
- [13] Simon S.I. and Leik M. (1999). Implementing culture change. Professional Safety, Vol. 44:3.
- [14] Tetlow, S. and Jenkins S. (2005). The Use of Fault Tree Analysis to Visualise the Importance of Human Factors for Safe Diving with Closed-Circuit Rebreathers. International Journal of the Society for Underwater Technology, Vol. 26 (3). pp. 51-59.

ANALIZA STABLA GREŠAKA ZBOG LETEĆIH ČESTICA STRUGOTINE PRI RADU SA STRUGOM ZA OBRADU METALA

Akinyemi Olasunkanmi Oriola, Giwa Solomon Olanrewaju, Adeyemi Hezekiah Oluwole, Akintan Adeshinaayomi Lawal, Mebude Oladapo

Sažetak: Najverovatniji uzrok nesreće pri radu sa strugom za obradu metala su leteće čestice strugotine. Cilj ovog istraživanja je utvrđivanje uzročnih faktora koji dovode do nezgoda zbog letećih čestica strugotine pri mašinskoj obradi, i određivanje verovatnoće nastanka ovog tipa nesreće. Analiza stabla grešaka (eng. Fault Tree Analzysis - FTA) se koristi za identifikaciju faktora rizika. Jednačine Bulove algebre su korišćene za analizu verovatnoće nastanka greške. Izvedena je simulacija Monte Karlo korišćenjem softvera OpenFTA a rezultat nakon 1000 ponavljanja je poređen sa rezultatima Bulove algebre. Alternativn bezbedonosne intervencija su procenjene uporednom analizom pre i posle sprovođenja mera zaštite. Identifikovana su dvadeset četiri (24) minimalna rezanja u kojima može nastati 21 osnovni događaj i 3 nerazvijena događaja. Najbitniji događaj ima verovatnoću 0.748 i označava veliku verovatnoću da će se doći do letenja strugotine. Simulacija Monte Karlo je dala donje i gornje granice verovatnoće od 0,725 i 0,773, respektivno. Ukoliko se odrvrtač glave struga ne izvuče pre početka mašinske obrade, ovaj događaj najviše doprinosi nastanku nesreće koja je prouzrokavana letećom strugotinom. Rezultat alternativnih zaštitinih intervencija je pokazao da verovatnoća raste na 0,192 a korist zbog primenjenjih mera bezbednosti postaje N27, 800 nakon prvog nivoa implementacije. Ostali nivoi bezbednosnih intervencija pokazuju da verovatnoća nezgode usled leteće strugotine opada. Imajuću ovo u vidu, inženjer zaštite može izabrati neki od odgovarajućih programa zaštite na osnovu skale efektivnosti.

Ključne reči: čestice leteće strugotine, nesreća, bezbednost, intervencija, strug, mašina, operacija.